Codec-Algorithmen werden zur Kodierung und Dekodierung (oder Komprimierung und Dekomprimierung) von Daten wie Videofilmen benutzt, ohne daß die visuelle Qualität des dekodierten Bildes beeinträchtigt wird. Bekannt sind zum Beispiel Codecs zur Konvertierung von analoger Videosignale in komprimierte Videodateien wie MPEG. Dieses Lehrbuch vermittelt Ihnen einen Überblick über einschlägige Standards und Technologien, der Schwerpunkt liegt auf Fragen des Designs. Einleuchtende qualitative und quantitative Vergleiche von Systemalternativen werden anhand von Fallstudien vorgenommen.
The video coding standard High Efficiency Video Coding (HEVC) targets at improved compression performance for video resolutions of HD and beyond, providing Ultra HD video at similar compressed bit rates as for HD video encoded with the well-established video coding standard H.264/AVC. Based on known concepts, new coding structures and improved coding tools have been developed and specified in HEVC. The standard is expected to be taken up easily by established industry as well as new endeavors, answering the needs of todays connected and ever-evolving online world. This book presents the High Efficiency Video Coding standard and explains it in a clear and coherent language. It provides a comprehensive and consistently written description, all of a piece. The book targets at both, newbies to video coding as well as experts in the field. While providing sections with introductory text for the beginner, it suits as a well-arranged reference book for the expert. The book provides a comprehensive reference for the technical details of the employed coding tools; it further outlines the algorithmic advances compared to H.264/AVC. In addition to the technical aspects, the book provides insight to the general concepts of standardization, how specification text is written, and how these concepts apply to the HEVC specification.
This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts of the standard, insight into how it was developed, and in-depth discussion of algorithms and architectures for its implementation.
Video Encoding by the Numbers helps readers optimize the quality and efficiency of their streaming video by objectively detailing the impact of critical configuration options with industry-standard quality metrics like PSNR and SSIMplus. This takes the guesswork out of most encoding decisions and allows readers to achieve the optimal quality/data rate tradeoff. In addition, readers learn how to use tools like the Moscow University Video Quality Measurement tool, SSIMWave Quality of Experience Monitor, and FFmpeg to perform similar quality tests on their own videos. Because all videos encode differently, the tests detailed in the book involve eight different videos, including movie footage, animations, talking head footage, a music video, and Powerpoint and Camtasia-based videos. Readers first learn how to determine the ideal data rate for their videos at different resolutions. Then the book covers configuration options like bitrate control (CBR, VBR) that impacts quality and deliverability, and I-Frame, B-Frame, and reference frame decisions that impact quality and encoding time. The next three chapters focus on codec-specific configurations like Profile and preset for H.264 and HEVC, and the various configuration options available for Google's VP9. Next the book details how to choose an adaptive bitrate (ABR) technology, how to create an encoding ladder, and the most efficient ways to encode and package video into different ABR formats. Working off the groundbreaking work by Netflix and YouTube, the final chapter teaches the reader how a use per-title encoding with their own videos to create the ideal encoding ladder for each video in their library. Each chapter concludes with a section detailing how to configure the options discussed with FFmpeg, a preferred tool for high-volume video producers, including packaging into HLS and DASH formats (the latter with MP4Box). Overall readers learn how to optimally configure their encoding ladders and how to produce their videos with FFmpeg.
Intelligent Image and Video Compression: Communicating Pictures, Second Edition explains the requirements, analysis, design and application of a modern video coding system. It draws on the authors' extensive academic and professional experience in this field to deliver a text that is algorithmically rigorous yet accessible, relevant to modern standards and practical. It builds on a thorough grounding in mathematical foundations and visual perception to demonstrate how modern image and video compression methods can be designed to meet the rate-quality performance levels demanded by today's applications and users, in the context of prevailing network constraints. "David Bull and Fan Zhang have written a timely and accessible book on the topic of image and video compression. Compression of visual signals is one of the great technological achievements of modern times, and has made possible the great successes of streaming and social media and digital cinema. Their book, Intelligent Image and Video Compression covers all the salient topics ranging over visual perception, information theory, bandpass transform theory, motion estimation and prediction, lossy and lossless compression, and of course the compression standards from MPEG (ranging from H.261 through the most modern H.266, or VVC) and the open standards VP9 and AV-1. The book is replete with clear explanations and figures, including color where appropriate, making it quite accessible and valuable to the advanced student as well as the expert practitioner. The book offers an excellent glossary and as a bonus, a set of tutorial problems. Highly recommended! --Al Bovik - An approach that combines algorithmic rigor with practical implementation using numerous worked examples - Explains how video compression methods exploit statistical redundancies, natural correlations, and knowledge of human perception to improve performance - Uses contemporary video coding standards (AVC, HEVC and VVC) as a vehicle for explaining block-based compression - Provides broad coverage of important topics such as visual quality assessment and video streaming
Reviews the new High Efficiency Video Coding (HEVC) standard and advancements in adaptive streaming technologies for use in broadband networks and the Internet This book describes next-generation video coding and streaming technologies with a comparative assessment of the strengths and weaknesses. Specific emphasis is placed on the H.265/HEVC video coding standard and adaptive bit rate video streaming. In addition to evaluating the impact of different types of video content and powerful feature sets on HEVC coding efficiency, the text provides an in-depth study on the practical performance of popular adaptive streaming platforms and useful tips for streaming optimization. Readers will learn of new over-the-top (OTT) online TV advancements, the direction of the broadband telecommunications industry, and the latest developments that will help keep implementation costs down and maximize return on infrastructure investment. Reviews the emerging High Efficiency Video Coding (HEVC) standard and compares its coding performance with the MPEG-4 Advanced Video Coding (AVC) and MPEG-2 standards Provides invaluable insights into the intra and inter coding efficiencies of HEVC, such as the impact of hierarchical block partitioning and new prediction modes Evaluates the performance of the Apple and Microsoft adaptive streaming platforms and presents innovative techniques related to aggregate stream bandwidth prediction, duplicate chunk Includes end-of-chapter homework problems and access to instructor slides Next-Generation Video Coding and Streaming is written for students, researchers, and industry professionals working in the field of video communications. Benny Bing has worked in academia for over 20 years. He has published over 80 research papers and 12 books, and has 6 video patents licensed to industry. He has served as a technical editor for several IEEE journals and an IEEE Communications Society Distinguished lecturer. He also received the National Association of Broadcasters (NAB) Technology Innovation Award for demonstrations of advanced media technologies.
H.264 Advanced Video Coding or MPEG-4 Part 10 is fundamental to a growing range of markets such as high definition broadcasting, internet video sharing, mobile video and digital surveillance. This book reflects the growing importance and implementation of H.264 video technology. Offering a detailed overview of the system, it explains the syntax, tools and features of H.264 and equips readers with practical advice on how to get the most out of the standard. Packed with clear examples and illustrations to explain H.264 technology in an accessible and practical way. Covers basic video coding concepts, video formats and visual quality. Explains how to measure and optimise the performance of H.264 and how to balance bitrate, computation and video quality. Analyses recent work on scalable and multi-view versions of H.264, case studies of H.264 codecs and new technological developments such as the popular High Profile extensions. An invaluable companion for developers, broadcasters, system integrators, academics and students who want to master this burgeoning state-of-the-art technology. "[This book] unravels the mysteries behind the latest H.264 standard and delves deeper into each of the operations in the codec. The reader can implement (simulate, design, evaluate, optimize) the codec with all profiles and levels. The book ends with extensions and directions (such as SVC and MVC) for further research." Professor K. R. Rao, The University of Texas at Arlington, co-inventor of the Discrete Cosine Transform
This book discusses in detail the basic algorithms of video compression that are widely used in modern video codec. The authors dissect complicated specifications and present material in a way that gets readers quickly up to speed by describing video compression algorithms succinctly, without going to the mathematical details and technical specifications. For accelerated learning, hybrid codec structure, inter- and intra- prediction techniques in MPEG-4, H.264/AVC, and HEVC are discussed together. In addition, the latest research in the fast encoder design for the HEVC and H.264/AVC is also included.
Following on from the successful MPEG-2 standard, MPEG-4 Visual is enabling a new wave of multimedia applications from Internet video streaming to mobile video conferencing. The new H.264 ‘Advanced Video Coding’ standard promises impressive compression performance and is gaining support from developers and manufacturers. The first book to cover H.264 in technical detail, this unique resource takes an application-based approach to the two standards and the coding concepts that underpin them. Presents a practical, step-by-step, guide to the MPEG-4 Visual and H.264 standards for video compression. Introduces the basic concepts of digital video and covers essential background material required for an understanding of both standards. Provides side-by-side performance comparisons of MPEG-4 Visual and H.264 and advice on how to approach and interpret them to ensure conformance. Examines the way that the standards have been shaped and developed, discussing the composition and procedures of the VCEG and MPEG standardisation groups. Focussing on compression tools and profiles for practical multimedia applications, this book ‘decodes’ the standards, enabling developers, researchers, engineers and students to rapidly get to grips with both H.264 and MPEG-4 Visual. Dr Iain Richardson leads the Image Communication Technology research group at the Robert Gordon University in Scotland and is the author of over 40 research papers and two previous books on video compression technology.
The requirements for multimedia (especially video and audio) communications increase rapidly in the last two decades in broad areas such as television, entertainment, interactive services, telecommunications, conference, medicine, security, business, traffic, defense and banking. Video and audio coding standards play most important roles in multimedia communications. In order to meet these requirements, series of video and audio coding standards have been developed such as MPEG-2, MPEG-4, MPEG-21 for audio and video by ISO/IEC, H.26x for video and G.72x for audio by ITU-T, Video Coder 1 (VC-1) for video by the Society of Motion Picture and Television Engineers (SMPTE) and RealVideo (RV) 9 for video by Real Networks. AVS China is the abbreviation for Audio Video Coding Standard of China. This new standard includes four main technical areas, which are systems, video, audio and digital copyright management (DRM), and some supporting documents such as consistency verification. The second part of the standard known as AVS1-P2 (Video - Jizhun) was approved as the national standard of China in 2006, and several final drafts of the standard have been completed, including AVS1-P1 (System - Broadcast), AVS1-P2 (Video - Zengqiang), AVS1-P3 (Audio - Double track), AVS1-P3 (Audio - 5.1), AVS1-P7 (Mobile Video), AVS-S-P2 (Video) and AVS-S-P3 (Audio). AVS China provides a technical solution for many applications such as digital broadcasting (SDTV and HDTV), high-density storage media, Internet streaming media, and will be used in the domestic IPTV, satellite and possibly the cable TV market. Comparing with other coding standards such as H.264 AVC, the advantages of AVS video standard include similar performance, lower complexity, lower implementation cost and licensing fees. This standard has attracted great deal of attention from industries related to television, multimedia communications and even chip manufacturing from around the world. Also many well known companies have joined the AVS Group to be Full Members or Observing Members. The 163 members of AVS Group include Texas Instruments (TI) Co., Agilent Technologies Co. Ltd., Envivio Inc., NDS, Philips Research East Asia, Aisino Corporation, LG, Alcatel Shanghai Bell Co. Ltd., Nokia (China) Investment (NCIC) Co. Ltd., Sony (China) Ltd., and Toshiba (China) Co. Ltd. as well as some high level universities in China. Thus there is a pressing need from the instructors, students, and engineers for a book dealing with the topic of AVS China and its performance comparisons with similar standards such as H.264, VC-1 and RV-9.