Vibration-based Techniques For Damage Detection And Localization In Engineering Structures

Vibration-based Techniques For Damage Detection And Localization In Engineering Structures

Author: Ali Salehzadeh Nobari

Publisher: World Scientific

Published: 2018-05-04

Total Pages: 256

ISBN-13: 178634498X

DOWNLOAD EBOOK

In the oil and gas industries, large companies are endeavoring to find and utilize efficient structural health monitoring methods in order to reduce maintenance costs and time. Through an examination of the vibration-based techniques, this title addresses theoretical, computational and experimental methods used within this trend.By providing comprehensive and up-to-date coverage of established and emerging processes, this book enables the reader to draw their own conclusions about the field of vibration-controlled damage detection in comparison with other available techniques. The chapters offer a balance between laboratory and practical applications, in addition to detailed case studies, strengths and weakness are drawn from a broad spectrum of information.


Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2

Author: M. Arif Wani

Publisher: Springer

Published: 2020-12-14

Total Pages: 300

ISBN-13: 9789811567582

DOWNLOAD EBOOK

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.


Beam Structures

Beam Structures

Author: Erasmo Carrera

Publisher: John Wiley & Sons

Published: 2011-07-28

Total Pages: 171

ISBN-13: 1119951046

DOWNLOAD EBOOK

Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for beams and which has become established and recognised globally as the most important contribution to the field in the last quarter of a century. The Carrera Unified Formulation (CUF) has hierarchical properties, that is, the error can be reduced by increasing the number of the unknown variables. This formulation is extremely suitable for computer implementations and can deal with most typical engineering challenges. It overcomes the problem of classical formulae that require different formulas for tension, bending, shear and torsion; it can be applied to any beam geometries and loading conditions, reaching a high level of accuracy with low computational cost, and can tackle problems that in most cases are solved by employing plate/shell and 3D formulations. Key features: compares classical and modern approaches to beam theory, including classical well-known results related to Euler-Bernoulli and Timoshenko beam theories pays particular attention to typical applications related to bridge structures, aircraft wings, helicopters and propeller blades provides a number of numerical examples including typical Aerospace and Civil Engineering problems proposes many benchmark assessments to help the reader implement the CUF if they wish to do so accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given in the book as well as to solve other problems of their own www.mul2.com Researchers of continuum mechanics of solids and structures and structural analysts in industry will find this book extremely insightful. It will also be of great interest to graduate and postgraduate students of mechanical, civil and aerospace engineering.


A Framework for Vibration Based Damage Detection of Bridges Under Varying Temperature Effects Using Artificial Neural Networks and Time Series Analysis

A Framework for Vibration Based Damage Detection of Bridges Under Varying Temperature Effects Using Artificial Neural Networks and Time Series Analysis

Author: Branislav Z. Kostic

Publisher:

Published: 2015

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

Structural Health Monitoring (SHM) has become a very important area in civil engineering for evaluating the performance of critical civil infrastructure systems such as bridges. One of the most important issues with continuous SHM is the environmental effects (such as temperature, humidity, wind) on the measurement data, which can produce bigger effects in the response of the structures than the damage itself. Damage detection is considered as one of the most important components of SHM and without appropriately considering the environmental factors in the damage detection process, the efficiency and accuracy of this process may be questionable for practical applications. Temperature is considered as one of the most important and influential environmental effects on structures, especially in bridges. In this study, an artificial neural network based approach integrated with a sensor clustering based time series analysis is employed for damage detection under the temperature effects. Damage features from the time series analysis method (will be referred as DFARX) can indicate the damage, if there is no presence of detrimental temperature effect. However, if present, temperature effect can lead to false indication of the damage existence in the structure. Neural network damage features (DFANN) are used to compensate these effects. Final damage features (DF) are computed as absolute difference between these two damage features. The proposed methodology is applied to a footbridge finite element model and it is demonstrated that the method can successfully determine the existence, location and extent of the damage for different types of damage cases under environmental temperature variability, and with different levels of the noise. Finally, recommendations for the future work, as well as the limitations of the proposed methodology are addressed.


Experimental Vibration Analysis for Civil Structures

Experimental Vibration Analysis for Civil Structures

Author: Joel P. Conte

Publisher: Springer

Published: 2017-10-11

Total Pages: 926

ISBN-13: 3319674439

DOWNLOAD EBOOK

This edited volume presents selected contributions from the International Conference on Experimental Vibration Analysis of Civil Engineering Structures held in San Diego, California in 2017 (EVACES2017). The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation.