Mechanical Systems

Mechanical Systems

Author: Roger F. Gans

Publisher: Springer

Published: 2014-09-02

Total Pages: 448

ISBN-13: 3319083716

DOWNLOAD EBOOK

This essential textbook concerns analysis and control of engineering mechanisms, which includes almost any apparatus with moving parts used in daily life, from musical instruments to robots. A particular characteristic of this book is that it presents with considerable breadth and rigor both vibrations and controls. Many contemporary texts combine both of these topics in a single, one term course. This text supports the more favorable circumstance where the material is covered in a one year sequence contains enough material for a two semester sequence, but it can also be used in a single semester course combining two topics. “Mechanical Systems: A Unified Approach to Vibrations and Controls” presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text.


Vibration of Mechanical Systems

Vibration of Mechanical Systems

Author: Alok Sinha

Publisher: Cambridge University Press

Published: 2010-10-18

Total Pages: 329

ISBN-13: 1139490796

DOWNLOAD EBOOK

This is a textbook for a first course in mechanical vibrations. There are many books in this area that try to include everything, thus they have become exhaustive compendiums, overwhelming for the undergraduate. In this book, all the basic concepts in mechanical vibrations are clearly identified and presented in a concise and simple manner with illustrative and practical examples. Vibration concepts include a review of selected topics in mechanics; a description of single-degree-of-freedom (SDOF) systems in terms of equivalent mass, equivalent stiffness, and equivalent damping; a unified treatment of various forced response problems (base excitation and rotating balance); an introduction to systems thinking, highlighting the fact that SDOF analysis is a building block for multi-degree-of-freedom (MDOF) and continuous system analyses via modal analysis; and a simple introduction to finite element analysis to connect continuous system and MDOF analyses. There are more than sixty exercise problems, and a complete solutions manual. The use of MATLAB® software is emphasized.


Identification and Control of Mechanical Systems

Identification and Control of Mechanical Systems

Author: Jer-Nan Juang

Publisher: Cambridge University Press

Published: 2001-08-06

Total Pages: 352

ISBN-13: 1139430114

DOWNLOAD EBOOK

The control of vibrating systems is a significant issue in the design of aircraft, spacecraft, bridges and high-rise buildings. This 2001 book discusses the control of vibrating systems, integrating structural dynamics, vibration analysis, modern control and system identification. Integrating these subjects is an important feature in that engineers will need only one book, rather than several texts or courses, to solve vibration control problems. The book begins with a review of basic mathematics needed to understand subsequent material. Chapters then cover more recent and valuable developments in aerospace control and identification theory, including virtual passive control, observer and state-space identification, and data-based controller synthesis. Many practical issues and applications are addressed, with examples showing how various methods are applied to real systems. Some methods show the close integration of system identification and control theory from the state-space perspective, rather than from the traditional input-output model perspective of adaptive control. This text will be useful for advanced undergraduate and beginning graduate students in aerospace, mechanical and civil engineering, as well as for practising engineers.


Vibrations and Waves in Continuous Mechanical Systems

Vibrations and Waves in Continuous Mechanical Systems

Author: Peter Hagedorn

Publisher: John Wiley & Sons

Published: 2007-10-22

Total Pages: 396

ISBN-13: 9780470518427

DOWNLOAD EBOOK

The subject of vibrations is of fundamental importance in engineering and technology. Discrete modelling is sufficient to understand the dynamics of many vibrating systems; however a large number of vibration phenomena are far more easily understood when modelled as continuous systems. The theory of vibrations in continuous systems is crucial to the understanding of engineering problems in areas as diverse as automotive brakes, overhead transmission lines, liquid filled tanks, ultrasonic testing or room acoustics. Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics. Presents dynamics and analysis techniques for a wide range of continuous systems including strings, bars, beams, membranes, plates, fluids and elastic bodies in one, two and three dimensions. Covers special topics such as the interaction of discrete and continuous systems, vibrations in translating media, and sound emission from vibrating surfaces, among others. Develops the reader’s understanding by progressing from very simple results to more complex analysis without skipping the key steps in the derivations. Offers a number of new topics and exercises that form essential steppingstones to the present level of research in the field. Includes exercises at the end of the chapters based on both the academic and practical experience of the authors. Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will be suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field.


Vibration Control For Optomechanical Systems

Vibration Control For Optomechanical Systems

Author: Vyacheslav M Ryaboy

Publisher: World Scientific

Published: 2021-11-29

Total Pages: 280

ISBN-13: 9811237352

DOWNLOAD EBOOK

Vibration presents a major challenge to advanced experiments and technological processes in engineering, physics and life sciences that rely on optics and optoelectronics. This compendium discusses ways in which vibration may affect optical performance and describes methods and means of reducing this impact. Principal methods of vibration control, namely, damping and isolation are highlighted using mathematical models and real-life examples.The unique text covers some topics that are important for optomechanical applications but are lacking in general vibration texts, such as dynamics and stability of elastically supported systems with high centers of gravity, physics of pneumatic isolators, and application of dynamic absorbers to vibration-isolated systems.This useful reference book enables the reader to apply the vibration control tools properly and perform basic analytical and experimental tasks of estimating and verifying their performance. It is also a must-have textbook for undergraduate or graduate-level courses in vibration control and optomechanics.Related Link(s)


Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems

Author: Francisco Beltran-Carbajal

Publisher: BoD – Books on Demand

Published: 2018-04-18

Total Pages: 132

ISBN-13: 178923056X

DOWNLOAD EBOOK

This book focuses on recent and innovative methods on vibration analysis, system identification, and diverse control design methods for both wind energy conversion systems and vibrating systems. Advances on both theoretical and experimental studies about analysis and control of oscillating systems in several engineering disciplines are discussed. Various control devices are synthesized and implemented for vibration attenuation tasks. The book is addressed to researchers and practitioners on the subject, as well as undergraduate and postgraduate students and other experts and newcomers seeking more information about the state of the art, new challenges, innovative solutions, and new trends and developments in these areas. The six chapters of the book cover a wide range of interesting issues related to modeling, vibration control, parameter identification, active vehicle suspensions, tuned vibration absorbers, electronically controlled wind energy conversion systems, and other relevant case studies.


System Dynamics and Mechanical Vibrations

System Dynamics and Mechanical Vibrations

Author: Dietmar Findeisen

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 399

ISBN-13: 3662042053

DOWNLOAD EBOOK

A comprehensive treatment of "linear systems analysis" applied to dynamic systems as an approach to interdisciplinary system design beyond the related area of electrical engineering. The text gives an interpretation of mechanical vibrations based on the theory of dynamic systems, aiming to bridge the gap between existing theoretical methods in different engineering disciplines and to enable advanced students or professionals to model dynamic and vibrating systems with reference to communication and control processes. Emphasizing the theory it presents a balanced coverage of analytical principles and applications to vibrations with regard to mechatronic problems.


Mechanical Vibration

Mechanical Vibration

Author: Haym Benaroya

Publisher: CRC Press

Published: 2017-08-29

Total Pages: 602

ISBN-13: 1498753019

DOWNLOAD EBOOK

Mechanical Vibration: Analysis, Uncertainties, and Control, Fourth Edition addresses the principles and application of vibration theory. Equations for modeling vibrating systems are explained, and MATLAB® is referenced as an analysis tool. The Fourth Edition adds more coverage of damping, new case studies, and development of the control aspects in vibration analysis. A MATLAB appendix has also been added to help students with computational analysis. This work includes example problems and explanatory figures, biographies of renowned contributors, and access to a website providing supplementary resources.


Lyapunov-Based Control of Mechanical Systems

Lyapunov-Based Control of Mechanical Systems

Author: Marcio S. de Queiroz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 321

ISBN-13: 1461213525

DOWNLOAD EBOOK

The design of nonlinear controllers for mechanical systems has been an ex tremely active area of research in the last two decades. From a theoretical point of view, this attention can be attributed to their interesting dynamic behavior, which makes them suitable benchmarks for nonlinear control the oreticians. On the other hand, recent technological advances have produced many real-world engineering applications that require the automatic con trol of mechanical systems. the mechanism for de Often, Lyapunov-based techniques are utilized as veloping different nonlinear control structures for mechanical systems. The allure of the Lyapunov-based framework for mechanical system control de sign can most likely be assigned to the fact that Lyapunov function candi dates can often be crafted from physical insight into the mechanics of the system. That is, despite the nonlinearities, couplings, and/or the flexible effects associated with the system, Lyapunov-based techniques can often be used to analyze the stability of the closed-loop system by using an energy like function as the Lyapunov function candidate. In practice, the design procedure often tends to be an iterative process that results in the death of many trees. That is, the controller and energy-like function are often constructed in concert to foster an advantageous stability property and/or robustness property. Fortunately, over the last 15 years, many system the ory and control researchers have labored in this area to produce various design tools that can be applied in a variety of situations.


Engineering Vibration Analysis with Application to Control Systems

Engineering Vibration Analysis with Application to Control Systems

Author: C. Beards

Publisher: Elsevier

Published: 1995-06-17

Total Pages: 447

ISBN-13: 008052365X

DOWNLOAD EBOOK

Most machines and structures are required to operate with low levels of vibration as smooth running leads to reduced stresses and fatigue and little noise. This book provides a thorough explanation of the principles and methods used to analyse the vibrations of engineering systems, combined with a description of how these techniques and results can be applied to the study of control system dynamics. Numerous worked examples are included, as well as problems with worked solutions, and particular attention is paid to the mathematical modelling of dynamic systems and the derivation of the equations of motion. All engineers, practising and student, should have a good understanding of the methods of analysis available for predicting the vibration response of a system and how it can be modified to produce acceptable results. This text provides an invaluable insight into both.