Verification and Validation of Complex Systems: Human Factors Issues

Verification and Validation of Complex Systems: Human Factors Issues

Author: John A. Wise

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 682

ISBN-13: 3662029332

DOWNLOAD EBOOK

Despite its increasing importance, the verification and validation of the human-machine interface is perhaps the most overlooked aspect of system development. Although much has been written about the design and developmentprocess, very little organized information is available on how to verifyand validate highly complex and highly coupled dynamic systems. Inability toevaluate such systems adequately may become the limiting factor in our ability to employ systems that our technology and knowledge allow us to design. This volume, based on a NATO Advanced Science Institute held in 1992, is designed to provide guidance for the verification and validation of all highly complex and coupled systems. Air traffic control isused an an example to ensure that the theory is described in terms that will allow its implementation, but the results can be applied to all complex and coupled systems. The volume presents the knowledge and theory ina format that will allow readers from a wide variety of backgrounds to apply it to the systems for which they are responsible. The emphasis is on domains where significant advances have been made in the methods of identifying potential problems and in new testing methods and tools. Also emphasized are techniques to identify the assumptions on which a system is built and to spot their weaknesses.


System Validation and Verification

System Validation and Verification

Author: Jeffrey O. Grady

Publisher: CRC Press

Published: 1997-11-25

Total Pages: 356

ISBN-13: 9780849378386

DOWNLOAD EBOOK

Historically, the terms validation and verification have been very loosely defined in the system engineering world, with predictable confusion. Few hardware or software testing texts even touch upon validation and verification, despite the fact that, properly employed, these test tools offer system and test engineers powerful techniques for identifying and solving problems early in the design process. Together, validation and verification encompass testing, analysis, demonstration, and examination methods used to determine whether a proposed design will satisfy system requirements. System Validation and Verification clear definitions of the terms and detailed information on using these fundamental tools for problem solving. It smoothes the transition between requirements and design by providing methods for evaluating the ability of a given approach to satisfy demanding technical requirements. With this book, system and test engineers and project managers gain confidence in their designs and lessen the likelihood of serious problems cropping up late in the program. In addition to explanations of the theories behind the concepts, the book includes practical methods for each step of the process, examples from the author's considerable experience, and illustrations and tables to support the ideas. Although not primarily a textbook, System Validation and Verification is based in part on validation and verification courses taught by the author and is an excellent supplemental reference for engineering students. In addition to its usefulness to system engineers, the book will be valuable to a wider audience including manufacturing, design, software , and risk management project engineers - anyone involved in large systems design projects.


Verification and Validation in Systems Engineering

Verification and Validation in Systems Engineering

Author: Mourad Debbabi

Publisher: Springer Science & Business Media

Published: 2010-11-16

Total Pages: 261

ISBN-13: 3642152287

DOWNLOAD EBOOK

At the dawn of the 21st century and the information age, communication and c- puting power are becoming ever increasingly available, virtually pervading almost every aspect of modern socio-economical interactions. Consequently, the potential for realizing a signi?cantly greater number of technology-mediated activities has emerged. Indeed, many of our modern activity ?elds are heavily dependant upon various underlying systems and software-intensive platforms. Such technologies are commonly used in everyday activities such as commuting, traf?c control and m- agement, mobile computing, navigation, mobile communication. Thus, the correct function of the forenamed computing systems becomes a major concern. This is all the more important since, in spite of the numerous updates, patches and ?rmware revisions being constantly issued, newly discovered logical bugs in a wide range of modern software platforms (e. g. , operating systems) and software-intensive systems (e. g. , embedded systems) are just as frequently being reported. In addition, many of today’s products and services are presently being deployed in a highly competitive environment wherein a product or service is succeeding in most of the cases thanks to its quality to price ratio for a given set of features. Accordingly, a number of critical aspects have to be considered, such as the ab- ity to pack as many features as needed in a given product or service while c- currently maintaining high quality, reasonable price, and short time -to- market.


An Assessment of Space Shuttle Flight Software Development Processes

An Assessment of Space Shuttle Flight Software Development Processes

Author: National Research Council

Publisher: National Academies Press

Published: 1993-02-01

Total Pages: 207

ISBN-13: 030904880X

DOWNLOAD EBOOK

Effective software is essential to the success and safety of the Space Shuttle, including its crew and its payloads. The on-board software continually monitors and controls critical systems throughout a Space Shuttle flight. At NASA's request, the committee convened to review the agency's flight software development processes and to recommend a number of ways those processes could be improved. This book, the result of the committee's study, evaluates the safety, oversight, and management functions that are implemented currently in the Space Shuttle program to ensure that the software is of the highest quality possible. Numerous recommendations are made regarding safety and management procedures, and a rationale is offered for continuing the Independent Verification and Validation effort that was instituted after the Challenger Accident.


Verification, Validation, and Testing of Engineered Systems

Verification, Validation, and Testing of Engineered Systems

Author: Avner Engel

Publisher: John Wiley & Sons

Published: 2010-11-19

Total Pages: 723

ISBN-13: 1118029313

DOWNLOAD EBOOK

Systems' Verification Validation and Testing (VVT) are carried out throughout systems' lifetimes. Notably, quality-cost expended on performing VVT activities and correcting system defects consumes about half of the overall engineering cost. Verification, Validation and Testing of Engineered Systems provides a comprehensive compendium of VVT activities and corresponding VVT methods for implementation throughout the entire lifecycle of an engineered system. In addition, the book strives to alleviate the fundamental testing conundrum, namely: What should be tested? How should one test? When should one test? And, when should one stop testing? In other words, how should one select a VVT strategy and how it be optimized? The book is organized in three parts: The first part provides introductory material about systems and VVT concepts. This part presents a comprehensive explanation of the role of VVT in the process of engineered systems (Chapter-1). The second part describes 40 systems' development VVT activities (Chapter-2) and 27 systems' post-development activities (Chapter-3). Corresponding to these activities, this part also describes 17 non-testing systems' VVT methods (Chapter-4) and 33 testing systems' methods (Chapter-5). The third part of the book describes ways to model systems' quality cost, time and risk (Chapter-6), as well as ways to acquire quality data and optimize the VVT strategy in the face of funding, time and other resource limitations as well as different business objectives (Chapter-7). Finally, this part describes the methodology used to validate the quality model along with a case study describing a system's quality improvements (Chapter-8). Fundamentally, this book is written with two categories of audience in mind. The first category is composed of VVT practitioners, including Systems, Test, Production and Maintenance engineers as well as first and second line managers. The second category is composed of students and faculties of Systems, Electrical, Aerospace, Mechanical and Industrial Engineering schools. This book may be fully covered in two to three graduate level semesters; although parts of the book may be covered in one semester. University instructors will most likely use the book to provide engineering students with knowledge about VVT, as well as to give students an introduction to formal modeling and optimization of VVT strategy.


Verification and Validation in Scientific Computing

Verification and Validation in Scientific Computing

Author: William L. Oberkampf

Publisher: Cambridge University Press

Published: 2010-10-14

Total Pages: 782

ISBN-13: 1139491768

DOWNLOAD EBOOK

Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.


Independent Verification and Validation

Independent Verification and Validation

Author: Robert O. Lewis

Publisher: John Wiley & Sons

Published: 1992-11-11

Total Pages: 388

ISBN-13: 9780471570110

DOWNLOAD EBOOK

Comprehensive and up-to-date, it covers the most vital part of software development, independent verification and validation. Presents a variety of methods that will ensure better quality, performance, cost and reliability of technical products and systems. Features numerous hints, tips and instructions for better interaction between verification and validation personnel, development engineers and managers. Includes 8 case histories ranging from major engineering systems through information systems. Many of the principles involved also apply to computer hardware as well as the fields of science and engineering.


Complex Systems Design & Management

Complex Systems Design & Management

Author: Omar Hammami

Publisher: Springer Science & Business Media

Published: 2012-01-11

Total Pages: 370

ISBN-13: 3642252036

DOWNLOAD EBOOK

This book contains all refereed papers that were accepted to the second edition of the « Complex Systems Design & Management » (CSDM 2011) international conference that took place in Paris (France) from December 7 to December 9, 2011. (Website: http://www.csdm2011.csdm.fr/). These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSDM 2011 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net/).


Complex Systems Design & Management

Complex Systems Design & Management

Author: Daniel Krob

Publisher: Springer Nature

Published: 2023-10-29

Total Pages: 430

ISBN-13: 981996511X

DOWNLOAD EBOOK

This book contains all refereed papers accepted during the 14th International Conference on Complex Systems Design & Management CSD&M 2023 that took place in Beijing, People’s Republic of China by the end October 2023. Mastering complex systems requires an integrated understanding of industrial practices as well as sophisticated theoretical techniques and tools. This explains the creation of an annual go-between European and Asian forum dedicated to academic researchers and industrial actors working on complex industrial systems architecting, modeling and engineering. These proceedings cover the most recent trends in the emerging field of complex systems, both from an academic and professional perspective. A special focus was put this year on “New Trends in Complex Systems Engineering.” The CSD&M series of conferences were initiated under the guidance of CESAM Community in Europe, managed by CESAMES. Its Asian version took place in Singapore for three consecutive sessions during 2014 and 2018. The fourth Asian edition was held in Beijing in hybrid with the Chinese Society of Aeronautics and Astronautics (CSAA) as the co-organizer in 2021. Since 2023, its European and Asian conferences merge into one, taking place in China and Europe in turn. CESAM Community aims in organizing the sharing of good practices in systems architecting and model-based systems engineering (MBSE) and certifying the level of knowledge and proficiency in this field through the CESAM certification. The CESAM systems architecting, and model-based systems engineering (MBSE) certification is especially currently the most disseminated professional certification in the world in this domain through more than 3,000 real complex system development projects on which it was operationally deployed and around 10,000 engineers who were trained on the CESAM framework at international level.