Vector and Operator Valued Measures and Applications
Author: Don H. Tucker
Publisher: Academic Press
Published: 2014-05-10
Total Pages: 475
ISBN-13: 1483261026
DOWNLOAD EBOOKVector and Operator Valued Measures and Applications is a collection of papers presented at the Symposium on Vector and Operator Valued Measures and Applications held in Alta, Utah, on August 7-12, 1972. The symposium provided a forum for discussing vector and operator valued measures and their applications to various areas such as stochastic integration, electrical engineering, control theory, and scattering theory. Comprised of 37 chapters, this volume begins by presenting two remarks related to the result due to Kolmogorov: the first is a theorem holding for nonnegative definite functions from T X T to C (where T is an arbitrary index set), and the second applies to separable Hausdorff spaces T, continuous nonnegative definite functions ? from T X T to C, and separable Hilbert spaces H. The reader is then introduced to the extremal structure of the range of a controlled vector measure ? with values in a Hausdorff locally convex space X over the field of reals; how the theory of vector measures is connected with the theory of compact and weakly compact mappings on certain function spaces; and Daniell and Daniell-Bochner type integrals. Subsequent chapters focus on the disintegration of measures and lifting; products of spectral measures; and mean convergence of martingales of Pettis integrable functions. This book should be of considerable use to workers in the field of mathematics.