Variational Problems with Concentration

Variational Problems with Concentration

Author: Martin F. Bach

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 162

ISBN-13: 303488687X

DOWNLOAD EBOOK

This self-contained research monograph focuses on semilinear Dirichlet problems and similar equations involving the p-Laplacian. The author explains new techniques in detail, and derives several numerical methods approximating the concentration point and the free boundary. The corresponding plots are highlights of this book.


Newton-Type Methods for Optimization and Variational Problems

Newton-Type Methods for Optimization and Variational Problems

Author: Alexey F. Izmailov

Publisher: Springer

Published: 2014-07-08

Total Pages: 587

ISBN-13: 3319042475

DOWNLOAD EBOOK

This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.


One-dimensional Variational Problems

One-dimensional Variational Problems

Author: Giuseppe Buttazzo

Publisher: Oxford University Press

Published: 1998

Total Pages: 282

ISBN-13: 9780198504658

DOWNLOAD EBOOK

While easier to solve and accessible to a broader range of students, one-dimensional variational problems and their associated differential equations exhibit many of the same complex behavior of higher-dimensional problems. This book, the first moden introduction, emphasizes direct methods and provides an exceptionally clear view of the underlying theory.


Noncoercive Variational Problems and Related Results

Noncoercive Variational Problems and Related Results

Author: Daniel Goeleven

Publisher: CRC Press

Published: 1996-10-10

Total Pages: 186

ISBN-13: 9780582304024

DOWNLOAD EBOOK

In establishing a general theory of the existence of solutions for noncoercive variational problems and constrained problems formulated as variational inequalities or hemivariational inequalities, this Research Note illustrates recent mathematical approaches and results with various examples from mathematics and mechanics. The book unifies ideas for the treatment of various noncoercive problems and provides previously unpublished results for variational inequalities and hemivariational inequalities. The author points out important applications in mechanics and their mathfematical tratment using recession tools. This book will be of particular interest to researchers in pure and aplied mathematics and mechanics.


Variational Methods for Structural Optimization

Variational Methods for Structural Optimization

Author: Andrej Cherkaev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 561

ISBN-13: 1461211883

DOWNLOAD EBOOK

This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.


Convex Analysis and Variational Problems

Convex Analysis and Variational Problems

Author: Ivar Ekeland

Publisher: SIAM

Published: 1999-12-01

Total Pages: 414

ISBN-13: 9781611971088

DOWNLOAD EBOOK

This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.


An Elementary Course on Variational Problems in Calculus

An Elementary Course on Variational Problems in Calculus

Author: Naveen Kumar

Publisher: Alpha Science Int'l Ltd.

Published: 2005

Total Pages: 144

ISBN-13: 9781842651957

DOWNLOAD EBOOK

"The book covers topics in detail supported by figures and exercises and also lists some direct (approximate) methods to solve boundary value problems containing ordinary/partial differential equations by variational and residue methods, some of them being of immense importance in the treatment of finite element numerical methods. Variety of disciplines being used in the subject, are given in brief, in respective appendices."--BOOK JACKET.


Nonsmooth Variational Problems and Their Inequalities

Nonsmooth Variational Problems and Their Inequalities

Author: Siegfried Carl

Publisher: Springer Science & Business Media

Published: 2007-06-07

Total Pages: 404

ISBN-13: 038746252X

DOWNLOAD EBOOK

This monograph focuses primarily on nonsmooth variational problems that arise from boundary value problems with nonsmooth data and/or nonsmooth constraints, such as multivalued elliptic problems, variational inequalities, hemivariational inequalities, and their corresponding evolution problems. It provides a systematic and unified exposition of comparison principles based on a suitably extended sub-supersolution method.


Variational Principles and Free-boundary Problems

Variational Principles and Free-boundary Problems

Author: Avner Friedman

Publisher:

Published: 1988

Total Pages: 728

ISBN-13:

DOWNLOAD EBOOK

This advanced graduate-level text examines variational methods in partial differential equations and illustrates their applications to a number of free-boundary problems. Detailed statements of the standard theory of elliptic and parabolic operators make this treatment readable for engineers, students, and nonspecialists alike. The text's first two chapters can be used for a single-semester graduate course in variational inequalities or partial differential equations. The succeeding chapters -- covering jets and cavities, variational problems with potentials, and free-boundary problems not in variational form -- are more specialized and self-contained. Readers who have mastered chapters 1 and 2 will be able to conduct research on the problems explored in subsequent chapters. Bibliographic remarks conclude each chapter, along with several problems and exercises.