Calculus of Variations

Calculus of Variations

Author: I. M. Gelfand

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 260

ISBN-13: 0486135012

DOWNLOAD EBOOK

Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.


Variational Calculus with Elementary Convexity

Variational Calculus with Elementary Convexity

Author: J.L. Troutman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 373

ISBN-13: 1468401580

DOWNLOAD EBOOK

The calculus of variations, whose origins can be traced to the works of Aristotle and Zenodoros, is now Ii vast repository supplying fundamental tools of exploration not only to the mathematician, but-as evidenced by current literature-also to those in most branches of science in which mathematics is applied. (Indeed, the macroscopic statements afforded by variational principles may provide the only valid mathematical formulation of many physical laws. ) As such, it retains the spirit of natural philosophy common to most mathematical investigations prior to this century. How ever, it is a discipline in which a single symbol (b) has at times been assigned almost mystical powers of operation and discernment, not readily subsumed into the formal structures of modern mathematics. And it is a field for which it is generally supposed that most questions motivating interest in the subject will probably not be answerable at the introductory level of their formulation. In earlier articles,1,2 it was shown through several examples that a complete characterization of the solution of optimization problems may be available by elementary methods, and it is the purpose of this work to explore further the convexity which underlay these individual successes in the context of a full introductory treatment of the theory of the variational calculus. The required convexity is that determined through Gateaux variations, which can be defined in any real linear space and which provide an unambiguous foundation for the theory.


A First Course in the Calculus of Variations

A First Course in the Calculus of Variations

Author: Mark Kot

Publisher: American Mathematical Society

Published: 2014-10-06

Total Pages: 311

ISBN-13: 1470414953

DOWNLOAD EBOOK

This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.


Variational Calculus and Optimal Control

Variational Calculus and Optimal Control

Author: John L. Troutman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 471

ISBN-13: 1461207371

DOWNLOAD EBOOK

An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.


The Calculus of Variations

The Calculus of Variations

Author: Bruce van Brunt

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 295

ISBN-13: 0387216979

DOWNLOAD EBOOK

Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.


Introduction to the Variational Calculus

Introduction to the Variational Calculus

Author: J. H. Heinbockel

Publisher: Trafford Publishing

Published: 2007-01-04

Total Pages: 350

ISBN-13: 9781425103521

DOWNLOAD EBOOK

A textbook that is suitable for engineers, physicists, and scientist desiring an introduction to the basic concepts associated with the calculus of variations subject area with numerous worked examples.


Calculus of Variations

Calculus of Variations

Author: Filip Rindler

Publisher: Springer

Published: 2018-06-20

Total Pages: 446

ISBN-13: 3319776371

DOWNLOAD EBOOK

This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.


Calculus of Variations I

Calculus of Variations I

Author: Mariano Giaquinta

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 498

ISBN-13: 3662032783

DOWNLOAD EBOOK

This two-volume treatise is a standard reference in the field. It pays special attention to the historical aspects and the origins partly in applied problems—such as those of geometric optics—of parts of the theory. It contains an introduction to each chapter, section, and subsection and an overview of the relevant literature in the footnotes and bibliography. It also includes an index of the examples used throughout the book.


An Elementary Course on Variational Problems in Calculus

An Elementary Course on Variational Problems in Calculus

Author: Naveen Kumar

Publisher: Alpha Science Int'l Ltd.

Published: 2005

Total Pages: 144

ISBN-13: 9781842651957

DOWNLOAD EBOOK

"The book covers topics in detail supported by figures and exercises and also lists some direct (approximate) methods to solve boundary value problems containing ordinary/partial differential equations by variational and residue methods, some of them being of immense importance in the treatment of finite element numerical methods. Variety of disciplines being used in the subject, are given in brief, in respective appendices."--BOOK JACKET.


Applied Calculus of Variations for Engineers

Applied Calculus of Variations for Engineers

Author: Louis Komzsik

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 234

ISBN-13: 1482253607

DOWNLOAD EBOOK

The purpose of the calculus of variations is to find optimal solutions to engineering problems whose optimum may be a certain quantity, shape, or function. Applied Calculus of Variations for Engineers addresses this important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts, as it is aimed at enhancing the engineer’s understanding of the topic. This Second Edition text: Contains new chapters discussing analytic solutions of variational problems and Lagrange-Hamilton equations of motion in depth Provides new sections detailing the boundary integral and finite element methods and their calculation techniques Includes enlightening new examples, such as the compression of a beam, the optimal cross section of beam under bending force, the solution of Laplace’s equation, and Poisson’s equation with various methods Applied Calculus of Variations for Engineers, Second Edition extends the collection of techniques aiding the engineer in the application of the concepts of the calculus of variations.