Variable Ranking by Solution-path Algorithms

Variable Ranking by Solution-path Algorithms

Author: Bo Wang

Publisher:

Published: 2011

Total Pages: 40

ISBN-13:

DOWNLOAD EBOOK

Variable Selection has always been a very important problem in statistics. We often meet situations where a huge data set is given and we want to find out the relationship between the response and the corresponding variables. With a huge number of variables, we often end up with a big model even if we delete those that are insignificant. There are two reasons why we are unsatisfied with a final model with too many variables. The first reason is the prediction accuracy. Though the prediction bias might be small under a big model, the variance is usually very high. The second reason is interpretation. With a large number of variables in the model, it's hard to determine a clear relationship and explain the effects of variables we are interested in. A lot of variable selection methods have been proposed. However, one disadvantage of variable selection is that different sizes of model require different tuning parameters in the analysis, which is hard to choose for non-statisticians. Xin and Zhu advocate variable ranking instead of variable selection. Once variables are ranked properly, we can make the selection by adopting a threshold rule. In this thesis, we try to rank the variables using Least Angle Regression (LARS). Some shrinkage methods like Lasso and LARS can shrink the coefficients to zero. The advantage of this kind of methods is that they can give a solution path which describes the order that variables enter the model. This provides an intuitive way to rank variables based on the path. However, Lasso can sometimes be difficult to apply to variable ranking directly. This is because that in a Lasso solution path, variables might enter the model and then get dropped. This dropping issue makes it hard to rank based on the order of entrance. However, LARS, which is a modified version of Lasso, doesn't have this problem. We'll make use of this property and rank variables using LARS solution path.


The Solution Path of the Generalized Lasso

The Solution Path of the Generalized Lasso

Author: Ryan Joseph Tibshirani

Publisher: Stanford University

Published: 2011

Total Pages: 95

ISBN-13:

DOWNLOAD EBOOK

We present a path algorithm for the generalized lasso problem. This problem penalizes the l1 norm of a matrix D times the coefficient vector, and has a wide range of applications, dictated by the choice of D. Our algorithm is based on solving the dual of the generalized lasso, which facilitates computation and conceptual understanding of the path. For D=I (the usual lasso), we draw a connection between our approach and the well-known LARS algorithm. For an arbitrary D, we derive an unbiased estimate of the degrees of freedom of the generalized lasso fit. This estimate turns out to be quite intuitive in many applications.


IMPROVING THE ACCURACY OF VARIABLE SELECTION USING THE WHOLE SOLUTION PATH

IMPROVING THE ACCURACY OF VARIABLE SELECTION USING THE WHOLE SOLUTION PATH

Author: Yang Liu

Publisher:

Published: 2015

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

The performances of penalized least squares approaches profoundly depend on the selection of the tuning parameter; however, statisticians did not reach consensus on the criterion for choosing the tuning parameter. Moreover, the penalized least squares estimation that based on a single value of the tuning parameter suffers from several drawbacks. The tuning parameter selected by the traditional selection criteria such as AIC, BIC, CV tends to pick excessive variables, which results in an over-fitting model. On the contrary, many other criteria, such as the extended BIC that favors an over-sparse model, may run the risk of dropping some relevant variables in the model. In the dissertation, a novel approach for the feature selection based on the whole solution paths is proposed, which significantly improves the selection accuracy. The key idea is to partition the variables into the relevant set and the irrelevant set at each tuning parameter, and then select the variables which have been classified as relevant for at least one tuning parameter. The approach is named as Selection by Partitioning the Solution Paths (SPSP). Compared with other existing feature selection approaches, the proposed SPSP algorithm allows feature selection by using a wide class of penalty functions, including Lasso, ridge and other strictly convex penalties. Based on the proposed SPSP procedure, a new type of scores are presented to rank the importance of the variables in the model. The scores, noted as Area-out-of-zero-region Importance Scores (AIS), are defined by the areas between the solution paths and the boundary of the partitions over the whole solution paths. By applying the proposed scores in the stepwise selection, the false positive error of the selection is remarkably reduced. The asymptotic properties for the proposed SPSP estimator have been well established. It is showed that the SPSP estimator is selection consistent when the original estimator is either estimation consistent or selection consistent. Specially, the SPSP approach on the Lasso has been proved to be consistent over the whole solution paths under the irrepresentable condition. Additionally, a number of simulation studies have been conducted to illustrate the performance of the proposed approachs. The comparison between the SPSP algorithm and the existing selection criteria on the Lasso, the adaptive Lasso, the SCAD and the MCP were provided. The results showed the proposed method outperformed the existing variable selection methods in general. Finally, two real data examples of identifying the informative variables in the Boston housing data and the glioblastoma gene expression data are given. Compared with the models selected by other existing approaches, the models selected by the SPSP procedure are much simpler with relatively smaller model errors.


System Modeling and Optimization

System Modeling and Optimization

Author: Lorena Bociu

Publisher: Springer

Published: 2017-04-10

Total Pages: 541

ISBN-13: 3319557955

DOWNLOAD EBOOK

This book is a collection of thoroughly refereed papers presented at the 27th IFIP TC 7 Conference on System Modeling and Optimization, held in Sophia Antipolis, France, in June/July 2015. The 48 revised papers were carefully reviewed and selected from numerous submissions. They cover the latest progress in their respective areas and encompass broad aspects of system modeling and optimiza-tion, such as modeling and analysis of systems governed by Partial Differential Equations (PDEs) or Ordinary Differential Equations (ODEs), control of PDEs/ODEs, nonlinear optimization, stochastic optimization, multi-objective optimization, combinatorial optimization, industrial applications, and numericsof PDEs.


Nature-Inspired Optimization Algorithms

Nature-Inspired Optimization Algorithms

Author: Vasuki A

Publisher: CRC Press

Published: 2020-05-31

Total Pages: 251

ISBN-13: 1000076644

DOWNLOAD EBOOK

Nature-Inspired Optimization Algorithms, a comprehensive work on the most popular optimization algorithms based on nature, starts with an overview of optimization going from the classical to the latest swarm intelligence algorithm. Nature has a rich abundance of flora and fauna that inspired the development of optimization techniques, providing us with simple solutions to complex problems in an effective and adaptive manner. The study of the intelligent survival strategies of animals, birds, and insects in a hostile and ever-changing environment has led to the development of techniques emulating their behavior. This book is a lucid description of fifteen important existing optimization algorithms based on swarm intelligence and superior in performance. It is a valuable resource for engineers, researchers, faculty, and students who are devising optimum solutions to any type of problem ranging from computer science to economics and covering diverse areas that require maximizing output and minimizing resources. This is the crux of all optimization algorithms. Features: Detailed description of the algorithms along with pseudocode and flowchart Easy translation to program code that is also readily available in Mathworks website for some of the algorithms Simple examples demonstrating the optimization strategies are provided to enhance understanding Standard applications and benchmark datasets for testing and validating the algorithms are included This book is a reference for undergraduate and post-graduate students. It will be useful to faculty members teaching optimization. It is also a comprehensive guide for researchers who are looking for optimizing resources in attaining the best solution to a problem. The nature-inspired optimization algorithms are unconventional, and this makes them more efficient than their traditional counterparts.


Operations Research Proceedings 2003

Operations Research Proceedings 2003

Author: Dino Ahr

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 504

ISBN-13: 3642170226

DOWNLOAD EBOOK

This volume contains a selection of papers referring to lectures presented at the symposium "Operations Research 2003" (OR03) held at the Ruprecht Karls-Universitiit Heidelberg, September 3 - 5, 2003. This international con ference took place under the auspices of the German Operations Research So ciety (GOR) and of Dr. Erwin Teufel, prime minister of Baden-Wurttemberg. The symposium had about 500 participants from countries all over the world. It attracted academians and practitioners working in various field of Opera tions Research and provided them with the most recent advances in Opera tions Research and related areas in Economics, Mathematics, and Computer Science. The program consisted of 4 plenary and 13 semi-plenary talks and more than 300 contributed papers selected by the program committee to be presented in 17 sections. Due to a limited number of pages available for the proceedings volume, the length of each article as well as the total number of accepted contributions had to be restricted. Submitted manuscripts have therefore been reviewed and 62 of them have been selected for publication. This refereeing procedure has been strongly supported by the section chairmen and we would like to express our gratitude to them. Finally, we also would like to thank Dr. Werner Muller from Springer-Verlag for his support in publishing this proceedings volume.


Advances in Cryptology – ASIACRYPT 2015

Advances in Cryptology – ASIACRYPT 2015

Author: Tetsu Iwata

Publisher: Springer

Published: 2015-11-26

Total Pages: 809

ISBN-13: 3662488000

DOWNLOAD EBOOK

The two-volume set LNCS 9452 and 9453 constitutes the refereed proceedings of the 21st International Conference on the Theory and Applications of Cryptology and Information Security, ASIACRYPT 2015, held in Auckland, New Zealand, in November/December 2015. The 64 revised full papers and 3 invited talks presented were carefully selected from 251 submissions. They are organized in topical sections on indistinguishability obfuscation; PRFs and hashes; discrete logarithms and number theory; signatures; multiparty computation; public key encryption; ABE and IBE; zero-knowledge; attacks on ASASA; number field sieve; hashes and MACs; symmetric encryption; foundations; side-channel attacks; design of block ciphers; authenticated encryption; symmetric analysis; cryptanalysis; privacy and lattices.


Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Author: Gabriele Kern-Isberner

Publisher: Springer Nature

Published: 2019-09-04

Total Pages: 506

ISBN-13: 3030297659

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 15th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2019, held in Belgrade, Serbia, in September 2019. The 41 full papers presented together with 3 abstracts of invited talks inn this volume were carefully reviewed and selected from 62 submissions. The papers are organized in topical sections named: Argumentation; Belief Functions; Conditional, Default and Analogical Reasoning; Learning and Decision Making; Precise and Imprecise Probabilities; and Uncertain Reasoning for Applications.


Large Scale Linear and Integer Optimization: A Unified Approach

Large Scale Linear and Integer Optimization: A Unified Approach

Author: Richard Kipp Martin

Publisher: Springer Science & Business Media

Published: 1999

Total Pages: 762

ISBN-13: 9780792382027

DOWNLOAD EBOOK

In this book, Kipp Martin has systematically provided users with a unified treatment of the algorithms and the implementation of the algorithms that are important in solving large problems. Parts I and II of Large Scale Linear and Integer Programming provide an introduction to linear optimization using two simple but unifying ideas-projection and inverse projection. The ideas of projection and inverse projection are also extended to integer linear optimization. With the projection-inverse projection approach, theoretical results in integer linear optimization become much more analogous to their linear optimization counterparts. Hence, with an understanding of these two concepts, the reader is equipped to understand fundamental theorems in an intuitive way. Part III presents the most important algorithms that are used in commercial software for solving real-world problems. Part IV shows how to take advantage of the special structure in very large scale applications through decomposition. Part V describes,how to take advantage of special structure by modifying and enhancing the algorithms developed in Part III. This section contains a discussion of the current research in linear and integer linear programming. The author also shows in Part V how to take different problem formulations and appropriately 'modify' them so that the algorithms from Part III are more efficient. Again, the projection and inverse projection concepts are used in Part V to present the current research in linear and integer linear optimization in a very unified way.