Variable Lebesgue Spaces and Hyperbolic Systems

Variable Lebesgue Spaces and Hyperbolic Systems

Author: David Cruz-Uribe

Publisher: Springer

Published: 2014-07-22

Total Pages: 173

ISBN-13: 3034808402

DOWNLOAD EBOOK

This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts. Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some more technical proofs and background material omitted. Part 2 gives an overview of the asymptotic properties of solutions to hyperbolic equations and systems with time-dependent coefficients. First, an overview of known results is given for general scalar hyperbolic equations of higher order with constant coefficients. Then strongly hyperbolic systems with time-dependent coefficients are considered. A feature of the described approach is that oscillations in coefficients are allowed. Propagators for the Cauchy problems are constructed as oscillatory integrals by working in appropriate time-frequency symbol classes. A number of examples is considered and the sharpness of results is discussed. An exemplary treatment of dissipative terms shows how effective lower order terms can change asymptotic properties and thus complements the exposition.


Arithmetic Geometry over Global Function Fields

Arithmetic Geometry over Global Function Fields

Author: Gebhard Böckle

Publisher: Springer

Published: 2014-11-13

Total Pages: 350

ISBN-13: 3034808534

DOWNLOAD EBOOK

This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings.


P(x)-bi-laplacian: Application On Time-pdes In Viscoelasticity

P(x)-bi-laplacian: Application On Time-pdes In Viscoelasticity

Author: Khaled Zennir

Publisher: World Scientific

Published: 2024-07-26

Total Pages: 439

ISBN-13: 9811291578

DOWNLOAD EBOOK

The main subject of our book is to use the (p, p(x) and p(x))-bi-Laplacian operator in some partial differential systems, where we developed and obtained many results in quantitative and qualitative point of view.


Lebesgue and Sobolev Spaces with Variable Exponents

Lebesgue and Sobolev Spaces with Variable Exponents

Author: Lars Diening

Publisher: Springer

Published: 2011-03-29

Total Pages: 516

ISBN-13: 3642183638

DOWNLOAD EBOOK

The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.


Moduli of Weighted Hyperplane Arrangements

Moduli of Weighted Hyperplane Arrangements

Author: Valery Alexeev

Publisher: Birkhäuser

Published: 2015-05-18

Total Pages: 112

ISBN-13: 3034809158

DOWNLOAD EBOOK

This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces play a crucial role in Number Theory, String Theory, and Quantum Field Theory – to mention just a few. In particular, the notion of compactification of moduli spaces has been crucial for solving various open problems and long-standing conjectures. Further, the book reports on compactification techniques for moduli spaces in a large class where computations are possible, namely that of weighted stable hyperplane arrangements (shas).


Multi-dimensional Hyperbolic Partial Differential Equations

Multi-dimensional Hyperbolic Partial Differential Equations

Author: Sylvie Benzoni-Gavage

Publisher: Oxford University Press, USA

Published: 2007

Total Pages: 535

ISBN-13: 019921123X

DOWNLOAD EBOOK

Authored by leading scholars, this comprehensive text presents a view of the multi-dimensional hyperbolic partial differential equations, with a particular emphasis on problems in which modern tools of analysis have proved useful. It is useful to graduates and researchers in both hyperbolic PDEs and compressible fluid dynamics.


New Trends in Analysis and Geometry

New Trends in Analysis and Geometry

Author: Mohamed A. Khamsi

Publisher: Cambridge Scholars Publishing

Published: 2020-01-24

Total Pages: 401

ISBN-13: 1527546128

DOWNLOAD EBOOK

This unique mathematical volume brings together geometers, analysts, differential equations specialists and graph-theorists to provide a glimpse on recent mathematical trends whose commonalities have hitherto remained, for the most part, unnoticed. The applied mathematician will be pleasantly surprised with the interpretation of a voting system in terms of the fixed points of a mapping given in the book, as much as the classical analyst will be enthusiastic to find detailed discussions on the generalization of the notion of metric space, in which the metric takes values on an abstract monoid. Classical themes on fixed point theory are adapted to the diverse setting of graph theory, thus uncovering a set of tools whose power and versatility will be appreciated by mathematicians working on either area. The volume also includes recent results on variable exponent spaces which reveal much-needed connections with partial differential equations, while the incipient field of variational inequalities on manifolds, also explored here, will be of interest to researchers from a variety of fields.


Variable Lebesgue Spaces

Variable Lebesgue Spaces

Author: David V. Cruz-Uribe

Publisher: Springer Science & Business Media

Published: 2013-02-12

Total Pages: 316

ISBN-13: 3034805489

DOWNLOAD EBOOK

This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.​