"This report presents a series of discussions on selected topics related to the development of VTOL flying qualities criteria. The topics were chosen on the basis of their importance to flying qualities and the potential significance to the Air Force VTOL Integrated Flight Control System (VIFCS) program. The treatment given to the selected topics was aimed at identifying those areas that require further study and research within the scope of the VIFCS program. -- page iii.
A study has been undertaken to define hand-ling qualities criteria for V/STOL aircraft. With the current military requirements for helicopters and airplanes as a framework, modifications and additions were made for conversion to a preliminary set of V/STOL requirements using a broad background of flight experience and pilots' comments from VTOL and STOL aircraft, BLC (boundary-layer-control) equipped aircraft, variable stability aircraft, flight simulators and landing approach studies. The report contains a discussion of the reasoning behind and the sources of information leading to suggested requirements. The results of the study indicate that the majority of V/STOL requirements can be defined by modifications to the helicopter and/or airplane requirements by appropriate definition of reference speeds. Areas where a requirement is included but where the information is felt to be inadequate to establish a firm quantitative requirement include the following: Control power and damping relationships about all axes for various sizes and types of aircraft; control power, sensitivity, d-amping and response for height control; dynamic longitudinal and dynamic lateral- directional stability in the transition region, including emergency operation; hovering steadiness; acceleration and deceleration in transition; descent rates and flight-path angles in steep approaches, and thrust margin for approach.
This publication presents materials that constituted the lectures presented by the author as part of Course AA 234 Dynamics, Control, and Flying Qualities of V/STOL Aircraft that was taught in the Department of Aeronautics and Astronautics at Stanford University. It covers representative operations of vertical and short takeoff and landing (V/STOL) aircraft, a discussion of the pilot's strategy in controlling these aircraft, the equations of motion pertinent to V/STOL tasks, and their application in the analysis of longitudinal and lateral-directional control in hover and forward flight. Following that development, which applies to the characteristics of the basic airframe and propulsion system, the text concludes with a discussion of the contributions of control augmentation in specific flight tasks and of the integration of modern electronic displays with these controls.
A flight investigation was performed with the Dornier DO-31 VTOL to evaluate the performance, handling qualities, and operating characteristics that are considered to be important in the operation of a commercial VTOL transport in the terminal area. The DO-31, a 20,000 kilogram transport, has a mixed jet propulsion system; main engines with nozzles deflect from a cruise to a hover position, and vertical lift engines operated below 170 knots. This VTOL mode incorporates pitch and roll attitude and yaw rate stabilization. The tests concentrated on the transition, approach, and vertical landing. The mixed jet propulsion system provided a large usable performance envelope that enabled simulated IFR approaches to be made on 7 deg and 12 deg glide slopes. In these approaches management of thrust magnitude and direction was a primary problem, and some form of integrating the controls will be necessary. The handling qualities evaluation pointed out the need for additional research of define flight path criteria. The aircraft had satisfactory control and stability in hover out of ground effect. The recirculation effects in vertical landing were large below 15 meters.
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA)