Intended to fill a void in the atmospheric science literature, this self-contained text outlines the physical and mathematical basis of all aspects of atmospheric analysis as well as topics important in several other fields outside of it, including atmospheric dynamics and statistics.
In 2001, the U.S. Global Change Research Program produced the report A Plan for a New Science Initiative on the Global Water Cycle. This report was designed to represent a research strategy and scientific plan for investigating the global water cycle, and its interactions with climate and for developing an enhanced understanding of the fundamental processes that govern the availability and biogeochemistry of water resources. The USGCRP managers are currently considering how to move forward with implementation of this ambitious, broad, and potentially very fruitful plan on an interagency basis, and it requested that the National Research Council (NRC) advise them in this regard. This report, Review of USGCRP Plan for a New Science Initiative on the Global Water Cycle, provides comments on the water cycle science plan as related to its recommended scientific initiatives and goals, and it provides comments on the usefulness of the water cycle science plan to the USGCRP agencies in developing a coordinated global water cycle implementation plan.
New York City's municipal water supply system provides about 1 billion gallons of drinking water a day to over 8.5 million people in New York City and about 1 million people living in nearby Westchester, Putnam, Ulster, and Orange counties. The combined water supply system includes 19 reservoirs and three controlled lakes with a total storage capacity of approximately 580 billion gallons. The city's Watershed Protection Program is intended to maintain and enhance the high quality of these surface water sources. Review of the New York City Watershed Protection Program assesses the efficacy and future of New York City's watershed management activities. The report identifies program areas that may require future change or action, including continued efforts to address turbidity and responding to changes in reservoir water quality as a result of climate change.
The aim of this book is to document for the first time the dimensions and requirements of effective integrated groundwater management (IGM). Groundwater management is a formidable challenge, one that remains one of humanity’s foremost priorities. It has become a largely non-renewable resource that is overexploited in many parts of the world. In the 21st century, the issue moves from how to simply obtain the water we need to how we manage it sustainably for future generations, future economies, and future ecosystems. The focus then becomes one of understanding the drivers and current state of the groundwater resource, and restoring equilibrium to at-risk aquifers. Many interrelated dimensions, however, come to bear when trying to manage groundwater effectively. An integrated approach to groundwater necessarily involves many factors beyond the aquifer itself, such as surface water, water use, water quality, and ecohydrology. Moreover, the science by itself can only define the fundamental bounds of what is possible; effective IGM must also engage the wider community of stakeholders to develop and support policy and other socioeconomic tools needed to realize effective IGM. In order to demonstrate IGM, this book covers theory and principles, embracing: 1) an overview of the dimensions and requirements of groundwater management from an international perspective; 2) the scale of groundwater issues internationally and its links with other sectors, principally energy and climate change; 3) groundwater governance with regard to principles, instruments and institutions available for IGM; 4) biophysical constraints and the capacity and role of hydroecological and hydrogeological science including water quality concerns; and 5) necessary tools including models, data infrastructures, decision support systems and the management of uncertainty. Examples of effective, and failed, IGM are given. Throughout, the importance of the socioeconomic context that connects all effective IGM is emphasized. Taken as a whole, this work relates the many facets of effective IGM, from the catchment to global perspective.
Dr. Andres Alcolea is employed by Geo-Energie Suisse AG and is the funder and CEO of HydroGeoModels. All other Topic Editors declare no competing interests with regards to the Research Topic subject
Environmental problems in coastal ecosystems can sometimes be attributed to excess nutrients flowing from upstream watersheds into estuarine settings. This nutrient over-enrichment can result in toxic algal blooms, shellfish poisoning, coral reef destruction, and other harmful outcomes. All U.S. coasts show signs of nutrient over-enrichment, and scientists predict worsening problems in the years ahead. Clean Coastal Waters explains technical aspects of nutrient over-enrichment and proposes both immediate local action by coastal managers and a longer-term national strategy incorporating policy design, classification of affected sites, law and regulation, coordination, and communication. Highlighting the Gulf of Mexico's "Dead Zone," the Pfiesteria outbreak in a tributary of Chesapeake Bay, and other cases, the book explains how nutrients work in the environment, why nitrogen is important, how enrichment turns into over-enrichment, and why some environments are especially susceptible. Economic as well as ecological impacts are examined. In addressing abatement strategies, the committee discusses the importance of monitoring sites, developing useful models of over-enrichment, and setting water quality goals. The book also reviews voluntary programs, mandatory controls, tax incentives, and other policy options for reducing the flow of nutrients from agricultural operations and other sources.
Provides an in-depth look at science, policy and management in the water sector across the globe Sustainable water management is an increasingly complex challenge and policy priority facing global society. This book examines how governments, municipalities, corporations, and individuals find sustainable water management pathways across competing priorities of water for ecosystems, food, energy, economic growth and human consumption. It looks at the current politics and economics behind the management of our freshwater ecosystems and infrastructure and offers insightful essays that help stimulate more intense and informed debate about the subject and its need for local and international cooperation. This book celebrates the 15-year anniversary of Oxford University’s MSc course in Water Science, Policy and Management. Edited and written by some of the leading minds in the field, writing alongside alumni from the course, Water Science, Policy and Management: A Global Challenge offers in-depth chapters in three parts: Science; Policy; and Management. Topics cover: hydroclimatic extremes and climate change; the past, present, and future of groundwater resources; water quality modelling, monitoring, and management; and challenges for freshwater ecosystems. The book presents critical views on the monitoring and modelling of hydrological processes; the rural water policy in Africa and Asia; the political economy of wastewater in Europe; drought policy management and water allocation. It also examines the financing of water infrastructure; the value of wastewater; water resource planning; sustainable urban water supply and the human right to water. Features perspectives from some of the world’s leading experts on water policy and management Identifies and addresses current and future water sector challenges Charts water policy trends across a rapidly evolving set of challenges in a variety of global areas Covers the reallocation of water; policy process of risk management; the future of the world’s water under global environmental change; and more Water Science, Policy and Management: A Global Challenge is an essential book for policy makers and government agencies involved in water management, and for undergraduate and postgraduate students studying water science, governance, and policy.
Originally published in 1994, the first edition of Field Sampling Methods for Remedial Investigations soon became a premier resource in this field. The "Princeton Groundwater" course designated it as one of the top books on the market that addresses strategies for groundwater characterization, groundwater well installation, well completion, and groundwater sampling. This long awaited third edition provides most current and most cost-effective environmental media characterization methods and approaches supporting all aspects of remediation activities. This book integrates recommendations from over one hundred of the most current US EPA, State EPA, US Geological Survey, US Army Corps of Engineers, and National Laboratory environmental guidance and/or technical documents. This book provides guidance, examples, and/or case studies for the following subjects: Implementing the EPA’s latest Data Quality Objectives process Developing cost effective statistical & non-statistical sampling designs supporting all aspects of environmental remediation activities, and available statistical sample design software Aerial photography, surface geophysics, airborne/surface/downhole/building radiological surveys, soil gas surveying, environmental media sampling, DNAPL screening, portable X-ray fluorescence measurements Direct push groundwater sampling, well installation, well development, well purging, no-purge/low-flow/standard groundwater sampling, depth-discrete ground sampling, groundwater modeling Tracer testing, slug testing, waste container and building material sampling, pipe surveying, defining background conditions Documentation, quality control sampling, data verification/validation, data quality assessment, decontamination, health & safety, management of investigation waste A recognized expert on this subject, author Mark Byrnes provides standard operating procedures and guidance on the proper implementation of these methods, focusing on proven technologies that are acknowledged by EPA and State regulatory agencies as reputable techniques.
This volume is a collection of a selected number of articles based on presentations at the 2005 L’Aquila (Italy) Summer School on the topic of “Hydrologic Modeling and Water Cycle: Coupling of the Atmosphere and Hydrological Models”. The p- mary focus of this volume is on hydrologic modeling and their data requirements, especially precipitation. As the eld of hydrologic modeling is experiencing rapid development and transition to application of distributed models, many challenges including overcoming the requirements of compatible observations of inputs and outputs must be addressed. A number of papers address the recent advances in the State-of-the-art distributed precipitation estimation from satellites. A number of articles address the issues related to the data merging and use of geo-statistical techniques for addressing data limitations at spatial resolutions to capture the h- erogeneity of physical processes. The participants at the School came from diverse backgrounds and the level of - terest and active involvement in the discussions clearly demonstrated the importance the scienti c community places on challenges related to the coupling of atmospheric and hydrologic models. Along with my colleagues Dr. Erika Coppola and Dr. Kuolin Hsu, co-directors of the School, we greatly appreciate the invited lectures and all the participants. The members of the local organizing committee, Drs Barbara Tomassetti; Marco Verdecchia and Guido Visconti were instrumental in the success of the school and their contributions, both scienti cally and organizationally are much appreciated.