Competition and Cooperation in Neural Nets

Competition and Cooperation in Neural Nets

Author: S. Amari

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 460

ISBN-13: 3642464661

DOWNLOAD EBOOK

The human brain, wi th its hundred billion or more neurons, is both one of the most complex systems known to man and one of the most important. The last decade has seen an explosion of experimental research on the brain, but little theory of neural networks beyond the study of electrical properties of membranes and small neural circuits. Nonetheless, a number of workers in Japan, the United States and elsewhere have begun to contribute to a theory which provides techniques of mathematical analysis and computer simulation to explore properties of neural systems containing immense numbers of neurons. Recently, it has been gradually recognized that rather independent studies of the dynamics of pattern recognition, pattern format::ion, motor control, self-organization, etc. , in neural systems do in fact make use of common methods. We find that a "competition and cooperation" type of interaction plays a fundamental role in parallel information processing in the brain. The present volume brings together 23 papers presented at a U. S. -Japan Joint Seminar on "Competition and Cooperation in Neural Nets" which was designed to catalyze better integration of theory and experiment in these areas. It was held in Kyoto, Japan, February 15-19, 1982, under the joint sponsorship of the U. S. National Science Foundation and the Japan Society for the Promotion of Science. Participants included brain theorists, neurophysiologists, mathematicians, computer scientists, and physicists. There are seven papers from the U. S.


Current Catalog

Current Catalog

Author: National Library of Medicine (U.S.)

Publisher:

Published:

Total Pages: 1024

ISBN-13:

DOWNLOAD EBOOK

First multi-year cumulation covers six years: 1965-70.


Backpropagation

Backpropagation

Author: Yves Chauvin

Publisher: Psychology Press

Published: 2013-02-01

Total Pages: 576

ISBN-13: 1134775814

DOWNLOAD EBOOK

Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.


Cognitive Modeling

Cognitive Modeling

Author: Thad A. Polk

Publisher: MIT Press

Published: 2002

Total Pages: 1300

ISBN-13: 9780262661164

DOWNLOAD EBOOK

A comprehensive introduction to the computational modeling of human cognition.