This book introduces the latest advances made in both fundamental studies and potential applications of upconversion nanomaterials, particularly in the field of high-resolution in vitro bioanalysis and in vivo imaging. This book starts with the synthesis and characterization, and focuses on applications ranging from materials science to biology. Above all, it describes cutting-edge advances in upconversion nanophosphor (UCNP)-based applications in multiplexed encoding, guest delivery and release systems, photodynamic therapy (PDT), solar cells, photocatalysis and so on. The major barriers that currently prevent UCNPs from being used in mainstream applications are also presented in detail.
Upconverting Nanomaterials: Perspectives, Synthesis, and Applications serves as a powerful instrument that explores cutting-edge research knowledge on the topic of upconverting nanosystems, while simultaneously providing the necessary fundamental background for nonspecialist readers. The various aspects of upconverting materials are approached both from a theoretical point of view, particularly upconverting phenomenon, and a practical one. By presenting synthetic strategies, functionalization, production of core shell structures and nanocomposites, this book supplies PhD students, researchers, and scientists with a wealth of ideas they can apply to different fields of research. Thirty-five renowned scientists from around the world have collaborated to produce 11 chapters that help to "make a voyage" through the most important aspects of UPNPs, including syntheses, mechanism, functionalization, and applications.
Upconverting Nanomaterials: Perspectives, Synthesis, and Applications serves as a powerful instrument that explores cutting-edge research knowledge on the topic of upconverting nanosystems, while simultaneously providing the necessary fundamental background for nonspecialist readers. The various aspects of upconverting materials are approached both from a theoretical point of view, particularly upconverting phenomenon, and a practical one. By presenting synthetic strategies, functionalization, production of core shell structures and nanocomposites, this book supplies PhD students, researchers, and scientists with a wealth of ideas they can apply to different fields of research. Thirty-five renowned scientists from around the world have collaborated to produce 11 chapters that help to "make a voyage" through the most important aspects of UPNPs, including syntheses, mechanism, functionalization, and applications.
Modern learning resource providing broad coverage of the rapidly-advancing field of upconverting nanoparticles This modern reference explains photon upconversion technology using nanoparticles from first principles to novel and future applications in imaging, sensing, catalysis, energy technology, biomedicine, and many other areas. Expert authors discuss both established and novel materials and applications, going far beyond the coverage of previously published books on the subject. Key topics covered in the book include: Synthesis, characterization, and basic properties of nanoparticles with photon-upconverting properties New types of upconverting nanoparticles, including transition metal- and rare earth-doped materials, metal-organic frameworks, core/shell particles, and surface-modified particles Current and emerging application areas for upconverting nanoparticles, including heating, lighting, sensing, and detection Biomedical uses of nanoparticles, including photodynamic therapy Photon upconversion using nanoparticles has opened the door to a new universe of light-powered technology. This book is a key resource for scientists, physicists, and chemists across a wide range of disciplines who wish to master the theory, methods and applications of this powerful new technology.
This book introduces readers to fundamental information on phosphor and quantum dots. It comprehensively reviews the latest research advances in and applications of fluoride phosphors, oxide phosphors, nitridosilicate phosphors and various quantum dot materials. Phosphors and phosphor-based quantum dot materials have recently gained considerable scientific interest due to their wide range of applications in lighting, displays, medical and telecommunication technologies. This work will be of great interest to researchers and graduate students in materials sciences and chemistry who wish to learn more about the principles, synthesis and analysis of phosphors and quantum dot materials.
Upconversion Nanophosphors provides detailed information about various lanthanide-based upconversion nanoparticles and their application in different fields. It will also help solve fundamental and applied problems of inorganic phosphor materials showing upconversion behavior, as well as generate innovative ideas related to the application of inorganic phosphor materials. This book will prove to be an invaluable reference work for scientists, engineers, industrial experts, and masters and PhD students working in the field of upconversion and materials science. - Covers the synthesis and characterization of upconversion nanophosphors and their applications - Highlights which classes of upconversion materials are suitable for a specific application - Explores processes to engineer upconversion nanoparticles for state-of-the-art technologies, including upconversion labelling and counterfeiting, highly sensitive and selective biosensing, and upconversion-activated drug delivery
Covers the fundamentals of measuring temperature at the nanoscale, luminescence-based and non-luminescence based thermometry techniques, and applications.
This book explores upconversion nanoparticles (UCNPs) at both, the fundamental as well as applied levels, for functional applications. It provides a broad perspective about the synthesis approaches of UCNPs with the preferred size, improved and tunable upconversion luminescence, along with the combined multifunctionality for various applications. It highlights the fundamentals and systematic developments in the tuning of UC emission and surface engineering of UCNPs that make UCNPs convenient for use in a large range of applications. Moreover, it gives an understanding of the imposed limitations and challenges associated with these methods to achieve the desired performance in targeted applications. It also includes the latest multifunctional lanthanide-based UCNPs, which efficiently convert low-energy photons into high-energy photons, and their applications in fluorescent microscopy, deep-tissue bioimaging, nanomedicine, optogenetics, solid-state lighting, solar cells, security labeling, and volumetric display.
A guide to modifying and functionalizing the surfaces of polymers Surface Modification of Polymers is an essential guide to the myriad methods that can be employed to modify and functionalize the surfaces of polymers. The functionalization of polymer surfaces is often required for applications in sensors, membranes, medicinal devices, and others. The contributors?noted experts on the topic?describe the polymer surface in detail and discuss the internal and external factors that influence surface properties. This comprehensive guide to the most important methods for the introduction of new functionalities is an authoritative resource for everyone working in the field. This book explores many applications, including the plasma polymerization technique, organic surface functionalization by initiated chemical vapor deposition, photoinduced functionalization on polymer surfaces, functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, surface modification of nanoparticles, and many more. Inside, readers will find information on various applications in the biomedical field, food science, and membrane science. This important book: -Offers a range of polymer functionalization methods for biomedical applications, water filtration membranes, and food science -Contains discussions of the key surface modification methods, including plasma and chemical techniques, as well as applications for nanotechnology, environmental filtration, food science, and biomedicine -Includes contributions from a team of international renowned experts Written for polymer chemists, materials scientists, plasma physicists, analytical chemists, surface physicists, and surface chemists, Surface Modification of Polymers offers a comprehensive and application-oriented review of the important functionalization methods with a special focus on biomedical applications, membrane science, and food science.
This book provides an overview of the design and physico-chemical properties of nanoparticles developed for biomedical applications such as targeting and detection of pathologies, nanovectorization of drugs, radiosensitization, metal detection, and nanocomposite implants. The considerations necessary when developing a new nanomedicine are also developed, including toxicological investigation, biodistribution, and efficacy. This book provides an accurate and current representation of the field by addressing the promises and hurdles of nanomedicine via 20 different pertinent studies. Covering a wide range of areas, this book is an excellent partner for physico-chemists, doctors, pharmacologists, and biochemists working on nanosciences dedicated to medicine, both in industry and in academia.