The Next Generation of Electric Power Unit Commitment Models

The Next Generation of Electric Power Unit Commitment Models

Author: Benjamin F. Hobbs

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 323

ISBN-13: 0306476630

DOWNLOAD EBOOK

Over the years, the electric power industry has been using optimization methods to help them solve the unit commitment problem. The result has been savings of tens and perhaps hundreds of millions of dollars in fuel costs. Things are changing, however. Optimization technology is improving, and the industry is undergoing radical restructuring. Consequently, the role of commitment models is changing, and the value of the improved solutions that better algorithms might yield is increasing. The dual purpose of this book is to explore the technology and needs of the next generation of computer models for aiding unit commitment decisions. Because of the unit commitment problem's size and complexity and because of the large economic benefits that could result from its improved solution, considerable attention has been devoted to algorithm development in the book. More systematic procedures based on a variety of widely researched algorithms have been proposed and tested. These techniques have included dynamic programming, branch-and-bound mixed integer programming (MIP), linear and network programming approaches, and Benders decomposition methods, among others. Recently, metaheuristic methods have been tested, such as genetic programming and simulated annealing, along with expert systems and neural networks. Because electric markets are changing rapidly, how UC models are solved and what purposes they serve need reconsideration. Hence, the book brings together people who understand the problem and people who know what improvements in algorithms are really possible. The two-fold result in The Next Generation of Electric Power Unit Commitment Models is an assessment of industry needs and new formulations and computational approaches that promise to make unit commitment models more responsive to those needs.


Power Systems and Power Plant Control 1989

Power Systems and Power Plant Control 1989

Author: U. Ahn

Publisher: Elsevier

Published: 2014-06-05

Total Pages: 565

ISBN-13: 1483298949

DOWNLOAD EBOOK

The control of power systems and power plants is a subject of growing interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas, such as maintaining a high quality but economical service and coping with environmental constraints. The papers included within this volume provide the most up to date developments in this field of research.


Modern Optimization Techniques with Applications in Electric Power Systems

Modern Optimization Techniques with Applications in Electric Power Systems

Author: Soliman Abdel-Hady Soliman

Publisher: Springer Science & Business Media

Published: 2011-12-14

Total Pages: 430

ISBN-13: 1461417511

DOWNLOAD EBOOK

This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical applications and examples the use of functional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful. ​


Handbook of Power Systems I

Handbook of Power Systems I

Author: Steffen Rebennack

Publisher: Springer Science & Business Media

Published: 2010-08-26

Total Pages: 503

ISBN-13: 3642024939

DOWNLOAD EBOOK

Energy is one of the world`s most challenging problems, and power systems are an important aspect of energy related issues. This handbook contains state-of-the-art contributions on power systems modeling and optimization. The book is separated into two volumes with six sections, which cover the most important areas of energy systems. The first volume covers the topics operations planning and expansion planning while the second volume focuses on transmission and distribution modeling, forecasting in energy, energy auctions and markets, as well as risk management. The contributions are authored by recognized specialists in their fields and consist in either state-of-the-art reviews or examinations of state-of-the-art developments. The articles are not purely theoretical, but instead also discuss specific applications in power systems.