This study of the nonlinear output regulation problem embraces local as well as global cases, covering such aspects as controller design and practical implementation issues. From the reviews: "The authors treat the problem of output regulation for a nonlinear control system...[they] develop a global approach to output regulation along familiar lines....I found the book to be ambitious and rigorous, tackling some hard conceptual issues." --IEEE TRANSACTIONS ON AUTOMATIC CONTROL
This study of the nonlinear output regulation problem embraces local as well as global cases, covering such aspects as controller design and practical implementation issues. From the reviews: "The authors treat the problem of output regulation for a nonlinear control system...[they] develop a global approach to output regulation along familiar lines....I found the book to be ambitious and rigorous, tackling some hard conceptual issues." --IEEE TRANSACTIONS ON AUTOMATIC CONTROL
The core of this textbook is a systematic and self-contained treatment of the nonlinear stabilization and output regulation problems. Its coverage embraces both fundamental concepts and advanced research outcomes and includes many numerical and practical examples. Several classes of important uncertain nonlinear systems are discussed. The state-of-the art solution presented uses robust and adaptive control design ideas in an integrated approach which demonstrates connections between global stabilization and global output regulation allowing both to be treated as stabilization problems. Stabilization and Regulation of Nonlinear Systems takes advantage of rich new results to give students up-to-date instruction in the central design problems of nonlinear control, problems which are a driving force behind the furtherance of modern control theory and its application. The diversity of systems in which stabilization and output regulation become significant concerns in the mathematical formulation of practical control solutions—whether in disturbance rejection in flying vehicles or synchronization of Lorenz systems with harmonic systems—makes the text relevant to readers from a wide variety of backgrounds. Many exercises are provided to facilitate study and solutions are freely available to instructors via a download from springerextras.com. Striking a balance between rigorous mathematical treatment and engineering practicality, Stabilization and Regulation of Nonlinear Systems is an ideal text for graduate students from many engineering and applied-mathematical disciplines seeking a contemporary course in nonlinear control. Practitioners and academic theorists will also find this book a useful reference on recent thinking in this field.
This Festschrift, published on the occasion of the sixtieth birthday of Yutaka - mamoto (‘YY’ as he is occasionally casually referred to), contains a collection of articles by friends, colleagues, and former Ph.D. students of YY. They are a tribute to his friendship and his scienti?c vision and oeuvre, which has been a source of inspiration to the authors. Yutaka Yamamoto was born in Kyoto, Japan, on March 29, 1950. He studied applied mathematics and general engineering science at the Department of Applied Mathematics and Physics of Kyoto University, obtaining the B.S. and M.Sc. degrees in 1972 and 1974. His M.Sc. work was done under the supervision of Professor Yoshikazu Sawaragi. In 1974, he went to the Center for Mathematical System T- ory of the University of Florida in Gainesville. He obtained the M.Sc. and Ph.D. degrees, both in Mathematics, in 1976 and 1978, under the direction of Professor Rudolf Kalman.
This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “guaranteed region of attraction” of a given equilibrium point and asymptotic rejection of the effect of exogenous (disturbance) inputs on selected regulated outputs. Much of the introductory instructional material in this book has been developed for teaching students, while the final coverage of nonlinear MIMO systems offers readers a first coordinated treatment of completely novel results. The worked examples presented provide the instructor with ready-to-use material to help students to understand the mathematical theory. Readers should be familiar with the fundamentals of linear-systems and control theory. This book is a valuable resource for students following postgraduate programs in systems and control, as well as engineers working on the control of robotic, mechatronic and power systems.
This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on important open problems with contributions that represent the state of the art in nonlinear control.
For over a quarter of a century, high-gain observers have been used extensively in the design of output feedback control of nonlinear systems. This book presents a clear, unified treatment of the theory of high-gain observers and their use in feedback control. Also provided is a discussion of the separation principle for nonlinear systems; this differs from other separation results in the literature in that recovery of stability as well as performance of state feedback controllers is given. The author provides a detailed discussion of applications of high-gain observers to adaptive control and regulation problems and recent results on the extended high-gain observers. In addition, the author addresses two challenges that face the implementation of high-gain observers: high dimension and measurement noise. Low-power observers are presented for high-dimensional systems. The effect of measurement noise is characterized and techniques to reduce that effect are presented. The book ends with discussion of digital implementation of the observers. Readers will find comprehensive coverage of the main results on high-gain observers; rigorous, self-contained proofs of all results; and numerous examples that illustrate and provide motivation for the results. The book is intended for engineers and applied mathematicians who design or research feedback control systems.
This book presents a survey on recent attempts to treat classical regulator design problems in case of an uncertain dynamics. It is shown that source of the uncertainty can be twofold: (i) The system is under the influence of an exogenous disturbance about which one has only incomplete - or none - information. (ii) A portion of the dynamical law is unspecified - due to imperfect modeling. Both cases are described by the state space model in a unified way “Disturbance Attenuation for Uncertain Control Systems” presents a variety of approaches to the design problem in the presence of a (partly) unknown disturbance signal. There is a clear philosophy underlying each approach which can be characterized by either one of the following terms: Adaptive Control, Worst Case Design, Dissipation Inequalities.
At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition organizes cutting-edge contributions from more than 200 leading experts. The third volume, Control System Advanced Methods, includes design and analysis methods for MIMO linear and LTI systems, Kalman filters and observers, hybrid systems, and nonlinear systems. It also covers advanced considerations regarding — Stability Adaptive controls System identification Stochastic control Control of distributed parameter systems Networks and networked controls As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances. Progressively organized, the first two volumes in the set include: Control System Fundamentals Control System Applications
In this edited collection we commemorate the 60th birthday of Prof. Christopher Byrnes and the retirement of Prof. Anders Lindquist from the Chair of Optimization and Systems Theory at KTH. These papers were presented in part at a 2009 workshop in KTH, Stockholm, honoring the lifetime contributions of Professors Byrnes and Lindquist in various fields of applied mathematics.