Modern thermoforming practice is a balance of practical experience and the application of engineering principles. This very practical book introduces the process, its tools and machinery, and the commonly used materials to novices and practicing engineers alike.
The process of heating and reshaping plastics sheet and film materials has been in use since the beginning of the plastics industry. This process is known as thermoforming. Today this process is used for industrial products including signage, housings, and hot tubs. It also produces much of the packaging in use today including blister packs, egg cartons, and food storage containers. This process has many advantages over other methods of producing these products, but it has some limitations. This book has a twofold purpose. It is designed to be used as a text book for a course on thermoforming. It is also intended to be an application guide for professionals in the field of thermoforming including manufacturing, process and quality engineers, and managers. This book is focused on process application rather than theory. It refers to real products and processes with the intent of understanding the real issues faced in this industry. In addition to materials and processes, part and tool design are covered. Quality control is critical to any operation and this is also covered in this text. Two areas of focus in today's industry include Lean operations and environmental issues. Both of these topics are also included. Table of Contents: Introduction / Plastics Materials / Thermoforming Process Overview / The Forming Process / Part Design Mold / Tool Design / Quality Control Issues / Lean Operations / Environmental Issues
This book is a comprehensive reference manual that contains essential information on thermoforming processing and technology. The field of thermoforming is experiencing rapid development driven by commercial factors; millions of tons of polymers are manufactured for use in various applications, both as commodity and specialty polymers. Building on the previous edition published about ten years ago, this edition includes new, as well as, fully revised chapters and updated information on materials and processes. The book is designed to provide practitioners with essential information on processing and technology in a concise manner. The book caters to both engineers and experts by providing introductory aspects, background information, and an overview of thermoforming processing and technology. The troubleshooting section includes flowcharts to assist in correcting thermoforming processes. p”emThermoforming: Processing and Technology offers a complete account of thermoplastics, covering properties and forming, with chapters providing perspective on the technologies involved. Readers will find it: serves as a handy knowledge source for professionals who occasionally work on thermoforming projects or need to refresh their knowledge; offers a troubleshooting guide that can help to identify and solve challenges that may arise in thermoforming processes; provides insights into process optimization, helping businesses improve efficiency, reduce waste, and enhance the quality of thermoformed products; acts as a course book to inform students about the thermoforming process. Audience The book will be of interest to mechanical, materials engineers, and process engineers who are involved in designing and optimizing thermoforming processes; professionals in the manufacturing and production industries who use thermoforming as a manufacturing method, such as in the production of plastic packaging, automotive components, and consumer goods; scientists, researchers, and students in plastics/polymer engineering and technology, materials science, polymer technology; professionals responsible for ensuring product quality and compliance with industry standards.
Thermoforming of Single and Multilayer Laminates explains the fundamentals of lamination and plastics thermoforming technologies along with current and new developments. It focuses on properties and thermoforming mechanics of plastic films and in particular single and multilayered laminates, including barrier films. For environmental and economic reasons, laminates are becoming increasingly important as a replacement for solid sheets and paint finishes in many industries, including transportation, packaging, and construction. Yet the processes of film formability during the extensive deformation and elevated temperatures experienced in conventional processing technologies, such as thermoforming, are poorly understood by most engineers. This book covers production processes, such as extrusion, calendaring, and casting, as well as mechanical and impact testing methods. It also describes how testing protocols developed for metals can be leveraged for plastic films and laminates, and includes a thorough discussion on methods for performing optical strain analysis. Applications in transportation vehicles and packaging, including packaging for food, medical and electronics applications, sports equipment, and household appliances, are discussed. Safety, recycling and environmental aspects of thermoforming and its products complete the book. First comprehensive source of information and hands-on guide for the thermoforming of multilayered laminates Covers applications across such sectors as automotive, packaging, home goods, and construction Introduces new testing methods leveraging protocols used for metals
Introduces the latest innovations in thermoforming materials, processes, and applications Advanced Thermoforming brings readers fully up to date with the latest standards, processes, materials, and applications in the field. From forming to filling to sealing processes, the author explains everything that can now be accomplished using the most advanced thermoforming technologies available. Moreover, readers learn how to fully leverage these technologies in order to design and manufacture products that meet all specifications at minimum cost and maximum efficiency. Emphasizing the application of advanced thermoforming for the production of technical parts and packaging, the book: Guides readers through all facets of development, design, and machine and mold technology Recommends new technologies that offer higher productivity, better quality, and lower costs Describes common raw materials used in thermoforming, including how specific materials affect the production process Explains the proper handling of semi-finished products and formed parts Sets forth the basic principles of extrusion, an essential process underlying thermoforming Introduces the latest software techniques to simulate the thermoforming of new products Throughout the book, readers learn about the latest innovations in thermoforming, from thermoformed automobile body parts to fully automated packaging assembly lines. The author offers valuable content from his interviews with leading industrial thermoformers, sharing insights and tips from their years of hands-on experience with readers. With Advanced Thermoforming as their guide, polymer and plastics engineering professionals and students can now explore and exploit the full range of possibilities that thermoforming technology offers.
This handbook provides a framework for understanding how to characterize plastic manufacturing processes for use in troubleshooting problems. The 21 chapters are authored by well-known and experienced engineers who have specialized knowledge about the processes covered in this practical guide. From the Preface: “In every chapter, the process is described and the most common problems are discussed along with the root causes and potential technical solutions. Numerous case studies are provided that illustrate the troubleshooting process. Mark A. Spalding, The Dow Chemical Company
Manufacturing and Design presents a fresh view on the world of industrial production: thinking in terms of both abstraction levels and trade-offs. The book invites its readers to distinguish between what is possible in principle for a certain process (as determined by physical law); what is possible in practice (the production method as determined by industrial state-of-the-art); and what is possible for a certain supplier (as determined by its production equipment). Specific processes considered here include metal forging, extrusion, and casting; plastic injection molding and thermoforming; additive manufacturing; joining; recycling; and more. By tackling the field of manufacturing processes from this new angle, this book makes the most out of a reader's limited time. It gives the knowledge needed to not only create well-producible designs, but also to understand supplier needs in order to find the optimal compromise. Apart from improving design for production, this publication raises the standards of thinking about producibility. - Emphasizes the strong link between product design and choice of manufacturing process - Introduces the concept of a "production triangle" to highlight tradeoffs between function, cost, and quality for different manufacturing methods - Balanced sets of questions are included to stimulate the reader's thoughts - Each chapter ends information on the production methods commonly associated with the principle discussed, as well as pointers for further reading - Hints to chapter exercises and an appendix on long exercises with worked solutions available on the book's companion site: http://booksite.elsevier.com/9780080999227/
An authoritative reference on the processing and finishing of polymeric materials for scientists and practitioners Owing to their versatility and wide range of applications, polymeric materials are of great commercial importance. Manufacturing processes of commercial products are designed to meet the requirements of the final product and are influenced by the physical and chemical properties of the polymeric material used. Based on Wiley's renowned Encyclopedia of Polymer Science and Technology, Processing and Finishing of Polymeric Materials provides comprehensive, up-to-date details on the latest manufacturing technologies, including blending, compounding, extrusion,molding, and coating. Written by prominent scholars from industry, academia, and research institutions from around the globe, this reference features more than forty selected reprints from the Encyclopedia as well as new contributions, providing unparalleled coverage of such topics as: Additives Antistatic agents Bleaching Blowing agents Calendaring Casting Coloring processes Dielectric heating Electrospinning Embedding Processing and Finishing of Polymeric Materials is an ideal resource for polymer and materials scientists, chemists, chemical engineers, materials scientists, process engineers, and consultants, and serves as a valuable addition to libraries of chemistry, chemical engineering, and materials science in industry, academia, and government.
"Provides in-depth coverage of the entire thermoforming molding process from market domain and materials options to manufacturing methods and peripheral support. Second Edition furnishes entirely new information on twin sheet forming, corrugated tubing and pipe manufacturin gtechniques, plastics recycling, forthcoming equipment, and energy and labor costs."
Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine provides readers with an overview of bioresorbable polymeric materials in the biomedical field. A useful resource for materials scientists in industry and academia, offering information on the fundamentals and considerations, synthesis and processing, and the clinical and R and D applications of bioresorbable polymers for biomedical applications. - Focuses on biomedical applications of bioresorbable polymers - Features a comprehensive range of topics including fundamentals, synthesis, processing, and applications - Provides balanced coverage of the field with contributions from academia and industry - Includes clinical and R and D applications of bioresorbable polymers for biomedical applications