This book explains the fascinating world of quarks and leptons and the forces that govern their behavior. Told from an experimental physicist's perspective, it forgoes mathematical complexity, using instead particularly accessible figures and apt analogies. In addition to the story of quarks and leptons, which are regarded as well-accepted fact, the author (who is a leading researcher at one of the world's highest energy particle physics laboratories) also discusses mysteries at both the experimental and theoretical frontiers, before tying it all together with the exciting field of cosmology and indeed the birth of the universe itself.
The Big Bang, the birth of the universe, was a singular event. All of the matter of the universe was concentrated at a single point, with temperatures so high that even the familiar protons and neutrons of atoms did not yet exist, but rather were replaced by a swirling maelstrom of energy, matter and antimatter. Exotic quarks and leptons flickered briefly into existence, before merging back into the energy sea.This book explains the fascinating world of quarks and leptons and the forces that govern their behavior. Told from an experimental physicist's perspective, it forgoes mathematical complexity, using instead particularly accessible figures and apt analogies. In addition to the story of quarks and leptons, which are regarded as well-accepted fact, the author (who is a leading researcher at one of the world's highest energy particle physics laboratories) also discusses mysteries at both the experimental and theoretical frontiers, before tying it all together with the exciting field of cosmology and indeed the birth of the universe itself.The text spans the tiny world of the quark to the depths of the universe with breathtaking clarity. The casual student of science will appreciate the careful distinction between what is known (quarks, leptons and antimatter), what is suspected (Higgs bosons, neutrino oscillations and the reason why the universe has so little antimatter) and what is merely dreamed (supersymmetry, superstrings and extra dimensions). Included is an unprecedented chapter explaining the accelerators and detectors of modern particle physics experiments. The chapter discussing the hunt for the Higgs boson — currently consuming the efforts of nearly 6000 physicists — reveals drama that only big-stakes science can give. Understanding the Universe leaves the reader with a deep appreciation of the fascinating particle realm and reverence for just how much it determines the rich beauty of our universe.Since the release of the first edition, the landscape has changed. The venerable Fermilab Tevatron has ceased operations after a quarter century of extraordinary performance, to be replaced by the CERN Large Hadron Collider, an accelerator with a design energy of seven times greater than the Tevatron and a collision rate of nearly a billion collisions per second. The next few years promise to be very exciting as scientists explore this new realm. This revised edition of Understanding the Universe will leave the reader with a deep appreciation of just why physicists are so excited.
Understanding the Universe: The Physics of the Cosmos from Quasars to Quarks explores how all areas of physics, from the very smallest scales to the very largest, come together to form our current understanding of the Universe. It takes readers on a fascinating journey, from the Big Bang and how the Universe has evolved, to how it appears now, and the possibilities for how it will continue to evolve in the future. It also explores the latest exciting developments in the area and how they impact our understanding of the Universe, such as quantum chromodynamics, black holes, dark energy, and gravitational waves. Equally importantly, it explains how we have come to know all of this about the Universe and details the limitations of our current understanding. This book is accessible to all introductory undergraduate students interested in the physical sciences. It prioritises a non-mathematical approach so it can be understood by all students, with only two algebraic equations in the book and any numerical calculations shown are limited to simple arithmetic. Key Features: Combines current understanding of quantum physics and cosmology, and includes the latest exciting developments from the field. Provides an accessible introduction to the topic, focusing on a non-mathematical presentation. Presents a comprehensive narrative on the subject and a coherent story.
Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.
"Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn much about physics, they will also learn to love it.
A new look at the first few seconds after the Big Bang—and how research into these moments continues to revolutionize our understanding of our universe Scientists in the past few decades have made crucial discoveries about how our cosmos evolved over the past 13.8 billion years. But there remains a critical gap in our knowledge: we still know very little about what happened in the first seconds after the Big Bang. At the Edge of Time focuses on what we have recently learned and are still striving to understand about this most essential and mysterious period of time at the beginning of cosmic history. Delving into the remarkable science of cosmology, Dan Hooper describes many of the extraordinary and perplexing questions that scientists are asking about the origin and nature of our world. Hooper examines how we are using the Large Hadron Collider and other experiments to re-create the conditions of the Big Bang and test promising theories for how and why our universe came to contain so much matter and so little antimatter. We may be poised to finally discover how dark matter was formed during our universe’s first moments, and, with new telescopes, we are also lifting the veil on the era of cosmic inflation, which led to the creation of our world as we know it. Wrestling with the mysteries surrounding the initial moments that followed the Big Bang, At the Edge of Time presents an accessible investigation of our universe and its origin.
From a star theoretical physicist, a journey into the world of particle physics and the cosmos—and a call for a more liberatory practice of science. Winner of the 2021 Los Angeles Times Book Prize in Science & Technology A Finalist for the 2022 PEN/E.O. Wilson Literary Science Writing Award A Smithsonian Magazine Best Science Book of 2021 A Symmetry Magazine Top 10 Physics Book of 2021 An Entropy Magazine Best Nonfiction Book of 2020-2021 A Publishers Weekly Best Nonfiction Book of the Year A Kirkus Reviews Best Nonfiction Book of 2021 A Booklist Top 10 Sci-Tech Book of the Year In The Disordered Cosmos, Dr. Chanda Prescod-Weinstein shares her love for physics, from the Standard Model of Particle Physics and what lies beyond it, to the physics of melanin in skin, to the latest theories of dark matter—along with a perspective informed by history, politics, and the wisdom of Star Trek. One of the leading physicists of her generation, Dr. Chanda Prescod-Weinstein is also one of fewer than one hundred Black American women to earn a PhD from a department of physics. Her vision of the cosmos is vibrant, buoyantly nontraditional, and grounded in Black and queer feminist lineages. Dr. Prescod-Weinstein urges us to recognize how science, like most fields, is rife with racism, misogyny, and other forms of oppression. She lays out a bold new approach to science and society, beginning with the belief that we all have a fundamental right to know and love the night sky. The Disordered Cosmos dreams into existence a world that allows everyone to experience and understand the wonders of the universe.
An insider's history of the world's largest particle accelerator, the Large Hadron Collider: why it was built, how it works, and the importance of what it has revealed. Since 2008 scientists have conducted experiments in a hyperenergized, 17-mile supercollider beneath the border of France and Switzerland. The Large Hadron Collider (or what scientists call "the LHC") is one of the wonders of the modern world—a highly sophisticated scientific instrument designed to re-create in miniature the conditions of the universe as they existed in the microseconds following the big bang. Among many notable LHC discoveries, one led to the 2013 Nobel Prize in Physics for revealing evidence of the existence of the Higgs boson, the so-called God particle. Picking up where he left off in The Quantum Frontier, physicist Don Lincoln shares an insider's account of the LHC's operational history and gives readers everything they need to become well informed on this marvel of technology. Writing about the LHC's early days, Lincoln offers keen insight into an accident that derailed the operation nine days after the collider's 2008 debut. A faulty solder joint started a chain reaction that caused a massive explosion, damaged 50 superconducting magnets, and vaporized large sections of the conductor. The crippled LHC lay dormant for over a year, while technical teams repaired the damage. Lincoln devotes an entire chapter to the Higgs boson and Higgs field, using several extended analogies to help explain the importance of these concepts to particle physics. In the final chapter, he describes what the discovery of the Higgs boson tells us about our current understanding of basic physics and how the discovery now keeps scientists awake over a nagging inconsistency in their favorite theory. As accessible as it is fascinating, The Large Hadron Collider reveals the inner workings of this masterful achievement of technology, along with the mind-blowing discoveries that will keep it at the center of the scientific frontier for the foreseeable future.
Go on an awe-inspiring journey, unraveling the secrets of our universe from the tiniest particles to the vastness of space In this thought-provoking exploration, physicists Chris Ferrie and Geraint F. Lewis delve into the fundamental questions that have puzzled humanity for centuries. What sparked the birth of the universe? How did matter and energy come into existence? With clarity and precision, Ferrie and Lewis navigate the realms of quantum physics, relativity, and cosmology, providing accessible explanations that engage both novices and enthusiasts. Featuring a harmonious blend of scientific rigor and captivating storytelling, Where Did the Universe Come From? bridges the gap between complex concepts and everyday understanding. Readers will: Explore the origin of the universe and the fundamental forces that govern it. Dive into the mind-boggling realm of quantum mechanics and its implications on the cosmic scale. Uncover the mysteries of black holes, dark matter, and the enigmatic nature of the cosmos. Enjoy an engaging narrative that seamlessly integrates complex scientific concepts with accessible explanations. Whether you're an astrophysics enthusiast, a science student, or simply someone with a profound interest in the wonders of the universe, this comprehensive guide offers a rich tapestry of knowledge about the captivating wonders that surround us all.
A new window opens onto the cosmos... Almost every day we are challenged by new information from the outermost reaches of space. Using straightforward language, One Universe explores the physical principles that govern the workings of our own world so that we can appreciate how they operate in the cosmos around us. Bands of color in a sunlit crystal and the spectrum of starlight in giant telescopes, the arc of a hard-hit baseball and the orbit of the moon, traffic patterns on a freeway and the spiral arms in a galaxy full of stars--they're all tied together in grand and simple ways. We can understand the vast cosmos in which we live by exploring three basic concepts: motion, matter, and energy. With these as a starting point, One Universe shows how the physical principles that operate in our kitchens and backyards are actually down-to-Earth versions of cosmic processes. The book then takes us to the limits of our knowledge, asking the ultimate questions about the origins and existence of life as we know it and where the universe came from--and where it is going. Glorious photographs--many seen for the first time in these pages--and original illustrations expand and enrich our understanding. Evocative and clearly written, One Universe explains complex ideas in ways that every reader can grasp and enjoy. This book captures the grandeur of the heavens while making us feel at home in the cosmos. Above all, it helps us realize that galaxies, stars, planets, and we ourselves all belong to One Universe.