Semiconducting Polymers

Semiconducting Polymers

Author: Georges Hadziioannou

Publisher: John Wiley & Sons

Published: 2006-12-15

Total Pages: 786

ISBN-13: 3527312714

DOWNLOAD EBOOK

Halbleitende Polymere sind ein faszinierendes interdisziplinäres Forschungsgebiet, das kurz vor dem anwendungstechnischen Durchbruch steht. Insbesondere für neue Komponenten in der Photonik und Optoelektronik bieten diese Materialien ein enormes Potential. Dieses zweibändige Handbuch mit Beiträgen herausragender Experten aus den Feldern Organische und Physikalische Chemie, Festkörperphysik bis hin zur Verfahrenstechnik, beschreibt detailliert die Grundlagen, die zum Verständnis und zur Kontrolle dieser faszinierenden Materialien notwendig sind.


Semiconducting and Metallic Polymers

Semiconducting and Metallic Polymers

Author: Alan J. Heeger

Publisher: OUP Oxford

Published: 2010-07-29

Total Pages: 288

ISBN-13: 0198528647

DOWNLOAD EBOOK

The unique properties of conducting and semiconducting (conjugated) polymers make them one of the most attractive areas of interdisciplinary materials science and technology. Written by a pioneer in the field, this book is the first aimed at teaching graduate students, postdoctoral scientists, and specialists in industry about this exciting field.


Materials Nanoarchitectonics

Materials Nanoarchitectonics

Author: Katsuhiko Ariga

Publisher: Elsevier

Published: 2023-12-07

Total Pages: 648

ISBN-13: 0323994733

DOWNLOAD EBOOK

Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures


Organic Thermoelectric Materials

Organic Thermoelectric Materials

Author: Zhiqun Lin

Publisher: Royal Society of Chemistry

Published: 2019-10-18

Total Pages: 330

ISBN-13: 1788014707

DOWNLOAD EBOOK

This book summarises the significant progress made in organic thermoelectric materials, focusing on effective routes to minimize thermal conductivity and maximize power factor.


Doping in Conjugated Polymers

Doping in Conjugated Polymers

Author: Pradip Kar

Publisher: John Wiley & Sons

Published: 2013-08-26

Total Pages: 176

ISBN-13: 1118573803

DOWNLOAD EBOOK

An A-to-Z of doping including its definition, its importance, methods of measurement, advantages and disadvantages, properties and characteristics—and role in conjugated polymers The versatility of polymer materials is expanding because of the introduction of electro-active behavior into the characteristics of some of them. The most exciting development in this area is related to the discovery of intrinsically conductive polymers or conjugated polymers, which include such examples as polyacetylene, polyaniline, polypyrrole, and polythiophene as well as their derivatives. "Synmet" or "synthetic metal" conjugated polymers, with their metallic characteristics, including conductivity, are of special interest to researchers. An area of limitless potential and application, conjugated polymers have sparked enormous interest, beginning in 2000 when the Nobel Prize for the discovery and development of electrically conducting conjugated polymers was awarded to three scientists: Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa. Conjugated polymers have a combination of properties—both metallic (conductivity) and polymeric; doping gives the conjugated polymer's semiconducting a wide range of conductivity, from insulating to low conducting. The doping process is a tested effective method for producing conducting polymers as semiconducting material, providing a substitute for inorganic semiconductors. Doping in Conjugated Polymers is the first book dedicated to the subject and offers a comprehensive A-to-Z overview. It details doping interaction, dopant types, doping techniques, and the influence of the dopant on applications. It explains how the performance of doped conjugated polymers is greatly influenced by the nature of the dopants and their level of distribution within the polymer, and shows how the electrochemical, mechanical, and optical properties of the doped conjugated polymers can be tailored by controlling the size and mobility of the dopants counter ions. The book also examines doping at the nanoscale, in particular, with carbon nanotubes. Readership The book will interest a broad range of researchers including chemists, electrochemists, biochemists, experimental and theoretical physicists, electronic and electrical engineers, polymer and materials scientists. It can also be used in both graduate and upper-level undergraduate courses on conjugated polymers and polymer technology.


PEDOT

PEDOT

Author: Andreas Elschner

Publisher: CRC Press

Published: 2010-11-02

Total Pages: 380

ISBN-13: 1420069128

DOWNLOAD EBOOK

While there is information available in handbooks on polythiophene chemistry and physics, until now, few if any books have focused exclusively on the most forwardly developed electrically conductive polymer, Poly (3,4-ethylenedioxythiophene)-otherwise known as PEDOT. This resource provides full chemical, physical, and technical information about this important conducting polymer, discussing basic knowledge and exploring its technical applications. Presented information is based on information generated at universities and through academic research, as well as by industrial scientists, providing a complete picture of the experimental and the practical aspects of this important polymer.


Polymer Materials for Energy and Electronic Applications

Polymer Materials for Energy and Electronic Applications

Author: Huisheng Peng

Publisher: Academic Press

Published: 2016-09-01

Total Pages: 388

ISBN-13: 0128110929

DOWNLOAD EBOOK

Polymer Materials for Energy and Electronic Applications is among the first books to systematically describe the recent developments in polymer materials and their electronic applications. It covers the synthesis, structures, and properties of polymers, along with their composites. In addition, the book introduces, and describes, four main kinds of electronic devices based on polymers, including energy harvesting devices, energy storage devices, light-emitting devices, and electrically driving sensors. Stretchable and wearable electronics based on polymers are a particular focus and main achievement of the book that concludes with the future developments and challenges of electronic polymers and devices. - Provides a basic understanding on the structure and morphology of polymers and their electronic properties and applications - Highlights the current applications of conducting polymers on energy harvesting and storage - Introduces the emerging flexible and stretchable electronic devices - Adds a new family of fiber-shaped electronic devices


Interface Engineering in Organic Field-Effect Transistors

Interface Engineering in Organic Field-Effect Transistors

Author: Xuefeng Guo

Publisher: John Wiley & Sons

Published: 2023-07-05

Total Pages: 277

ISBN-13: 3527840478

DOWNLOAD EBOOK

Interface Engineering in Organic Field-Effect Transistors Systematic summary of advances in developing effective methodologies of interface engineering in organic field-effect transistors, from models to experimental techniques Interface Engineering in Organic Field-Effect Transistors covers the state of the art in organic field-effect transistors and reviews charge transport at the interfaces, device design concepts, and device fabrication processes, and gives an outlook on the development of future optoelectronic devices. This book starts with an overview of the commonly adopted methods to obtain various semiconductor/semiconductor interfaces and charge transport mechanisms at these heterogeneous interfaces. Then, it covers the modification at the semiconductor/electrode interfaces, through which to tune the work function of electrodes as well as reveal charge injection mechanisms at the interfaces. Charge transport physics at the semiconductor/dielectric interface is discussed in detail. The book describes the remarkable effect of SAM modification on the semiconductor film morphology and thus the electrical performance. In particular, valuable analyses of charge trapping/detrapping engineering at the interface to realize new functions are summarized. Finally, the sensing mechanisms that occur at the semiconductor/environment interfaces of OFETs and the unique detection methods capable of interfacing organic electronics with biology are discussed. Specific sample topics covered in Interface Engineering in Organic Field-Effect Transistors include: Noncovalent modification methods, charge insertion layer at the electrode surface, dielectric surface passivation methods, and covalent modification methods Charge transport mechanism in bulk semiconductors, influence of additives on materials’ nucleation and morphology, solvent additives, and nucleation agents Nanoconfinement effect, enhancing the performance through semiconductor heterojunctions, planar bilayer heterostructure, ambipolar charge-transfer complex, and supramolecular arrangement of heterojunctions Dielectric effect in OFETs, dielectric modification to tune semiconductor morphology, surface energy control, microstructure design, solution shearing, eliminating interfacial traps, and SAM/SiO2 dielectrics A timely resource providing the latest developments in the field and emphasizing new insights for building reliable organic electronic devices, Interface Engineering in Organic Field-Effect Transistors is essential for researchers, scientists, and other interface-related professionals in the fields of organic electronics, nanoelectronics, surface science, solar cells, and sensors.


Comprehensive Nanoscience and Technology

Comprehensive Nanoscience and Technology

Author:

Publisher: Academic Press

Published: 2010-10-29

Total Pages: 2785

ISBN-13: 0123743966

DOWNLOAD EBOOK

From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.