Understanding Statistics and Statistical Myths

Understanding Statistics and Statistical Myths

Author: Kicab Castaneda-Mendez

Publisher: CRC Press

Published: 2015-11-18

Total Pages: 576

ISBN-13: 1498727468

DOWNLOAD EBOOK

Addressing 30 statistical myths in the areas of data, estimation, measurement system analysis, capability, hypothesis testing, statistical inference, and control charts, this book explains how to understand statistics rather than how to do statistics. Every statistical myth listed in this book has been stated in course materials used by the author


The Myth of Statistical Inference

The Myth of Statistical Inference

Author: Michael C. Acree

Publisher: Springer Nature

Published: 2021-07-05

Total Pages: 457

ISBN-13: 3030732576

DOWNLOAD EBOOK

This book proposes and explores the idea that the forced union of the aleatory and epistemic aspects of probability is a sterile hybrid, inspired and nourished for 300 years by a false hope of formalizing inductive reasoning, making uncertainty the object of precise calculation. Because this is not really a possible goal, statistical inference is not, cannot be, doing for us today what we imagine it is doing for us. It is for these reasons that statistical inference can be characterized as a myth. The book is aimed primarily at social scientists, for whom statistics and statistical inference are a common concern and frustration. Because the historical development given here is not merely anecdotal, but makes clear the guiding ideas and ambitions that motivated the formulation of particular methods, this book offers an understanding of statistical inference which has not hitherto been available. It will also serve as a supplement to the standard statistics texts. Finally, general readers will find here an interesting study with implications far beyond statistics. The development of statistical inference, to its present position of prominence in the social sciences, epitomizes a number of trends in Western intellectual history of the last three centuries, and the 11th chapter, considering the function of statistical inference in light of our needs for structure, rules, authority, and consensus in general, develops some provocative parallels, especially between epistemology and politics.


Statistical and Methodological Myths and Urban Legends

Statistical and Methodological Myths and Urban Legends

Author: Charles E. Lance

Publisher: Routledge

Published: 2010-10-18

Total Pages: 433

ISBN-13: 1135269661

DOWNLOAD EBOOK

This book provides an up-to-date review of commonly undertaken methodological and statistical practices that are sustained, in part, upon sound rationale and justification and, in part, upon unfounded lore. Some examples of these "methodological urban legends", as we refer to them in this book, are characterized by manuscript critiques such as: (a) "your self-report measures suffer from common method bias"; (b) "your item-to-subject ratios are too low"; (c) "you can’t generalize these findings to the real world"; or (d) "your effect sizes are too low". Historically, there is a kernel of truth to most of these legends, but in many cases that truth has been long forgotten, ignored or embellished beyond recognition. This book examines several such legends. Each chapter is organized to address: (a) what the legend is that "we (almost) all know to be true"; (b) what the "kernel of truth" is to each legend; (c) what the myths are that have developed around this kernel of truth; and (d) what the state of the practice should be. This book meets an important need for the accumulation and integration of these methodological and statistical practices.


Statistical Inference as Severe Testing

Statistical Inference as Severe Testing

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2018-09-20

Total Pages: 503

ISBN-13: 1108563309

DOWNLOAD EBOOK

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.


What is a P-value Anyway?

What is a P-value Anyway?

Author: Andrew Vickers

Publisher: Pearson

Published: 2010

Total Pages: 232

ISBN-13:

DOWNLOAD EBOOK

What is a p-value Anyway? offers a fun introduction to the fundamental principles of statistics, presenting the essential concepts in thirty-four brief, enjoyable stories. Drawing on his experience as a medical researcher, Vickers blends insightful explanations and humor, with minimal math, to help readers understand and interpret the statistics they read every day. Describing data; Data distributions; Variation of study results: confidence intervals; Hypothesis testing; Regression and decision making; Some common statistical errors, and what they teach us For all readers interested in statistics.


Understanding Statistics

Understanding Statistics

Author: Antony Davies

Publisher: Cato Institute

Published: 2017-12-05

Total Pages: 152

ISBN-13: 1944424369

DOWNLOAD EBOOK

The modern world is brimming with statistical information—information relevant to our personal health and safety, the weather, or the robustness of the national or global economy, to name just a few examples. But don’t statistics lie? Well, no—people lie, and sometimes they use statistical language to do it. Knowing when you’re being hoodwinked requires a degree of statistical literacy, but most people don’t learn how to interpret statistical claims unless they take a formal course that trains them in the mathematical techniques of statistical analysis. This book won’t turn you into a statistician—that would require a much longer and more technical discussion—but it will give you the tools to understand statistical claims and avoid common pitfalls associated with translating statistical information from the language of mathematics to plain English.


Statistical Misconceptions

Statistical Misconceptions

Author: Schuyler Huck

Publisher: Routledge

Published: 2015-11-19

Total Pages: 321

ISBN-13: 1317311566

DOWNLOAD EBOOK

This engaging book helps readers identify and then discard 52 misconceptions about data and statistical summaries. The focus is on major concepts contained in typical undergraduate and graduate courses in statistics, research methods, or quantitative analysis. Interactive Internet exercises that further promote undoing the misconceptions are found on the book's website. The author’s accessible discussion of each misconception has five parts: The Misconception - a brief description of the misunderstanding Evidence that the Misconception Exists – examples and claimed prevalence Why the Misconception is Dangerous – consequence of having the misunderstanding Undoing the Misconception - how to think correctly about the concept Internet Assignment - an interactive activity to help readers gain a firm grasp of the statistical concept and overcome the misconception. The book's statistical misconceptions are grouped into 12 chapters that match the topics typically taught in introductory/intermediate courses. However, each of the 52 discussions is self-contained, thus allowing the misconceptions to be covered in any order without confusing the reader. Organized and presented in this manner, the book is an ideal supplement for any standard textbook. An ideal supplement for undergraduate and graduate courses in statistics, research methods, or quantitative analysis taught in psychology, education, business, nursing, medicine, and the social sciences. The book also appeals to independent researchers interested in undoing their statistical misconceptions.


Understanding Statistics and Experimental Design

Understanding Statistics and Experimental Design

Author: Michael H. Herzog

Publisher: Springer

Published: 2019-08-13

Total Pages: 146

ISBN-13: 3030034992

DOWNLOAD EBOOK

This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.


The Art of Statistics

The Art of Statistics

Author: David Spiegelhalter

Publisher: Basic Books

Published: 2019-09-03

Total Pages: 359

ISBN-13: 1541618521

DOWNLOAD EBOOK

In this "important and comprehensive" guide to statistical thinking (New Yorker), discover how data literacy is changing the world and gives you a better understanding of life’s biggest problems. Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.


Statistical Models

Statistical Models

Author: David A. Freedman

Publisher: Cambridge University Press

Published: 2009-04-27

Total Pages: 459

ISBN-13: 1139477315

DOWNLOAD EBOOK

This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.