This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Microgrids are the most innovative area in the electric power industry today. Future microgrids could exist as energy-balanced cells within existing power distribution grids or stand-alone power networks within small communities. A definitive presentation on all aspects of microgrids, this text examines the operation of microgrids – their control concepts and advanced architectures including multi-microgrids. It takes a logical approach to overview the purpose and the technical aspects of microgrids, discussing the social, economic and environmental benefits to power system operation. The book also presents microgrid design and control issues, including protection and explaining how to implement centralized and decentralized control strategies. Key features: original, state-of-the-art research material written by internationally respected contributors unique case studies demonstrating success stories from real-world pilot sites from Europe, the Americas, Japan and China examines market and regulatory settings for microgrids, and provides evaluation results under standard test conditions a look to the future – technical solutions to maximize the value of distributed energy along with the principles and criteria for developing commercial and regulatory frameworks for microgrids Offering broad yet balanced coverage, this volume is an entry point to this very topical area of power delivery for electric power engineers familiar with medium and low voltage distribution systems, utility operators in microgrids, power systems researchers and academics. It is also a useful reference for system planners and operators, manufacturers and network operators, government regulators, and postgraduate power systems students. CONTRIBUTORS Thomas Degner Aris Dimeas Alfred Engler Nuno Gil Asier Gil de Muro Guillermo Jiménez-Estévez George Kariniotakis George Korres André Madureira Meiqin Mao Chris Marnay Jose Miguel Yarza Satoshi Morozumi Alexander Oudalov Frank van Overbeeke Rodrigo Palma Behnke Joao Abel Pecas Lopes Fernanda Resende John Romankiewicz Christine Schwaegerl Nikos Soultanis Liang Tao Antonis Tsikalakis
Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems. Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others. The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices. The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
Renewable Heating and Cooling: Technologies and Applications presents the latest information on the generation of heat for industry and domestic purposes, an area where a significant proportion of total energy is consumed. In Europe, this figure is estimated to be almost 50%, with the majority of heat generated by the consumption of fossil fuels. As there is a pressing need to increase the uptake of renewable heating and cooling (RHC) to reduce greenhouse gas emissions, this book provides a comprehensive and authoritative overview on the topic. Part One introduces key RHC technologies and discusses RHC in the context of global heating and cooling demand, featuring chapters on solar thermal process heat generation, deep geothermal energy, and solar cooling technologies. Part Two explores enabling technologies, special applications, and case studies with detailed coverage of thermal energy storage, hybrid systems, and renewable heating for RHC, along with case studies in China and Sweden. Users will find this book to be an essential resource for lead engineers and engineering consultants working on renewable heating and cooling in engineering companies, as well as academics and R&D professionals in private research institutes who have a particular interest in the subject matter. - Includes coverage on biomass, solar thermal, and geothermal renewable heating and cooling technologies - Features chapters on solar thermal process heat generation, deep geothermal energy, solar cooling technologies, and special applications - Presents case studies with detailed coverage of thermal energy storage, hybrid systems, and renewable heating for RHC - Explores enabling technologies and special applications
The energy system is undergoing a fundamental transformation – from fossil to renewable energy, from central power plants to distributed, decentralised generation facilities such as rooftop solar panels or wind parks, from utilities to private residents as producers of energy, and from analogue to digital. This book looks at the energy transformation from two complementary angles: governance and business model innovation. On the one side, governance is a decisive factor for the success of the transformation because it can act as an accelerator, or it can delay the process. On the other side, entrepreneurs and corporate decision-makers provide new business models for a decentralised energy world. Based on best practices, country studies and interviews with CEOs and founders of startups from all over the world, the “Global Game Changer” suggests eight key principles for political decision-makers to successfully implement the transformation, and six core competencies for corporate decision-makers to thrive in the new marketplace.
Helps readers understand and appreciate what the history of wind power can teach us about technology innovation and provides the implications for both wind power today and its future This book takes readers on a journey through the history of wind power in order to show how the technology evolved over the course of the twentieth century and where it may be headed in the twenty-first century. It introduces and examines broad themes such as government funding of wind power, the role of fossil fuels in wind power development, and the importance of entrepreneurs in wind power development. It also discusses the lessons learned from wind power technology innovation and makes them relevant to the understanding of wind power today and in the future. Spanning the entire history of wind power (1888-2018), The Wind Power Story: A Century of Innovation that Reshaped the Global Energy Landscape provides balanced coverage of each decade as well as the important wind power technology innovations that occurred during that time. Compelling from the first page to the last, it offers chapters covering the pioneers of wind power; the age of small wind; wind power in the wake of war; wind power’s use across Europe; government-funded research programs; how Denmark reinvented wind power in the 1970s; the California Wind Rush of the 1980s; wind power’s rise in Spain; America’s wind power starting in the 1990s; India’s wind power path; the wind power surge in China; the globalization of wind power; and much more. In addition, this text: Spans the entire global history of wind power, while weaving together both the historical context and the technical details of wind power innovation Provides historical context for wind power developments and explains the evolution of wind turbine technology in an easy-to-understand manner Discusses the policy, technology, and market evolution of wind power in commonly understood language Offers a review of the surrounding power technology, policy, and market environment throughout the history of wind power A book that both specialists and non-specialists can read in order to understand and appreciate the past, present, and future of wind power technology, The Wind Power Story: A Century of Innovation that Reshaped the Global Energy Landscape will be of great interest to any engineer and any interested readers looking to understand wind power technologies, markets, and policies in one book.
"Designed to provide recommendations for achieving 50% energy savings over the minimum code requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 for large hospitals; allows contractors, consulting engineers, architects, and designers to easily achieve advanced levels of energy savings without having to resort to detailed calculations or analyses"--
Climate Adaptation and Resilience Across Scales provides professionals with guidance on adapting the built environment to a changing climate. This edited volume brings together practitioners and researchers to discuss climate-related resilience from the building to the city scale. This book highlights North American cases that deal with issues such as climate projections, public health, adaptive capacity of vulnerable populations, and design interventions for floodplains, making the content applicable to many locations around the world. The contributors in this book discuss topics ranging from how built environment professionals respond to a changing climate, to how the building stock may need to adapt to climate change, to how resilience is currently being addressed in the design, construction, and operations communities. The purpose of this book is to provide a better understanding of climate change impacts, vulnerability, and resilience across scales of the built environment. Architects, urban designers, planners, landscape architects, and engineers will find this a useful resource for adapting buildings and cities to a changing climate.
Automatic generation control (AGC) is one of the most important control problems in the design and operation of interconnected power systems. Its significance continues to grow as a result of several factors: the changing structure and increasing size, complexity, and functionality of power systems, the rapid emergence (and uncertainty) of renewable energy sources, developments in power generation/consumption technologies, and environmental constraints. Delving into the fundamentals of power system AGC, Intelligent Automatic Generation Control explores ways to make the infrastructures of tomorrow smarter and more flexible. These frameworks must be able to handle complex multi-objective regulation optimization problems, and they must be highly diversified in terms of policies, control strategies, and wide distribution in demand and supply sources—all via an intelligent scheme. The core of such intelligent systems should be based on efficient, adaptable algorithms, advanced information technology, and fast communication devices to ensure that the AGC systems can maintain generation-load balance following serious disturbances. This book addresses several new schemes using intelligent control techniques for simultaneous minimization of system frequency deviation and tie-line power changes, which is required for successful operation of interconnected power systems. It also concentrates on physical and engineering aspects and examines several developed control strategies using real-time simulations. This reference will prove useful for engineers and operators in power system planning and operation, as well as academic researchers and students in field of electrical engineering.