Parameter Estimation and Uncertainty Quantification in Water Resources Modeling

Parameter Estimation and Uncertainty Quantification in Water Resources Modeling

Author: Philippe Renard

Publisher: Frontiers Media SA

Published: 2020-04-22

Total Pages: 177

ISBN-13: 2889636747

DOWNLOAD EBOOK

Numerical models of flow and transport processes are heavily employed in the fields of surface, soil, and groundwater hydrology. They are used to interpret field observations, analyze complex and coupled processes, or to support decision making related to large societal issues such as the water-energy nexus or sustainable water management and food production. Parameter estimation and uncertainty quantification are two key features of modern science-based predictions. When applied to water resources, these tasks must cope with many degrees of freedom and large datasets. Both are challenging and require novel theoretical and computational approaches to handle complex models with large number of unknown parameters.


Uncertainty Quantification

Uncertainty Quantification

Author: Ralph C. Smith

Publisher: SIAM

Published: 2024-09-13

Total Pages: 571

ISBN-13: 1611977843

DOWNLOAD EBOOK

Uncertainty quantification serves a fundamental role when establishing the predictive capabilities of simulation models. This book provides a comprehensive and unified treatment of the mathematical, statistical, and computational theory and methods employed to quantify uncertainties associated with models from a wide range of applications. Expanded and reorganized, the second edition includes advances in the field and provides a comprehensive sensitivity analysis and uncertainty quantification framework for models from science and engineering. It contains new chapters on random field representations, observation models, parameter identifiability and influence, active subspace analysis, and statistical surrogate models, and a completely revised chapter on local sensitivity analysis. Other updates to the second edition are the inclusion of over 100 exercises and many new examples — several of which include data — and UQ Crimes listed throughout the text to identify common misconceptions and guide readers entering the field. Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition is intended for advanced undergraduate and graduate students as well as researchers in mathematics, statistics, engineering, physical and biological sciences, operations research, and computer science. Readers are assumed to have a basic knowledge of probability, linear algebra, differential equations, and introductory numerical analysis. The book can be used as a primary text for a one-semester course on sensitivity analysis and uncertainty quantification or as a supplementary text for courses on surrogate and reduced-order model construction and parameter identifiability analysis.


Quantifying Uncertainty in Subsurface Systems

Quantifying Uncertainty in Subsurface Systems

Author: Céline Scheidt

Publisher: John Wiley & Sons

Published: 2018-06-19

Total Pages: 306

ISBN-13: 1119325838

DOWNLOAD EBOOK

Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: A multi-disciplinary treatment of uncertainty quantification Case studies with actual data that will appeal to methodology developers A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources


Novel Approaches and Their Applications in Risk Assessment

Novel Approaches and Their Applications in Risk Assessment

Author: Yuzhou Luo

Publisher: BoD – Books on Demand

Published: 2012-04-20

Total Pages: 358

ISBN-13: 9535105191

DOWNLOAD EBOOK

Risk assessment is a critical component in the evaluation and protection of natural or anthropogenic systems. Conventionally, risk assessment is involved with some essential steps such as the identification of problem, risk evaluation, and assessment review. Other novel approaches are also discussed in the book chapters. This book is compiled to communicate the latest information on risk assessment approaches and their effectiveness. Presented materials cover subjects from environmental quality to human health protection.


Data Assimilation for the Geosciences

Data Assimilation for the Geosciences

Author: Steven J. Fletcher

Publisher: Elsevier

Published: 2017-03-10

Total Pages: 978

ISBN-13: 0128044845

DOWNLOAD EBOOK

Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used


Sensitivity Analysis in Earth Observation Modelling

Sensitivity Analysis in Earth Observation Modelling

Author: George P. Petropoulos

Publisher: Elsevier

Published: 2016-10-07

Total Pages: 448

ISBN-13: 0128030313

DOWNLOAD EBOOK

Sensitivity Analysis in Earth Observation Modeling highlights the state-of-the-art in ongoing research investigations and new applications of sensitivity analysis in earth observation modeling. In this framework, original works concerned with the development or exploitation of diverse methods applied to different types of earth observation data or earth observation-based modeling approaches are included. An overview of sensitivity analysis methods and principles is provided first, followed by examples of applications and case studies of different sensitivity/uncertainty analysis implementation methods, covering the full spectrum of sensitivity analysis techniques, including operational products. Finally, the book outlines challenges and future prospects for implementation in earth observation modeling. Information provided in this book is of practical value to readers looking to understand the principles of sensitivity analysis in earth observation modeling, the level of scientific maturity in the field, and where the main limitations or challenges are in terms of improving our ability to implement such approaches in a wide range of applications. Readers will also be informed on the implementation of sensitivity/uncertainty analysis on operational products available at present, on global and continental scales. All of this information is vital in the selection process of the most appropriate sensitivity analysis method to implement. - Outlines challenges and future prospects of sensitivity analysis implementation in earth observation modeling - Provides readers with a roadmap for directing future efforts - Includes case studies with applications from different regions around the globe, helping readers to explore strengths and weaknesses of the different methods in earth observation modeling - Presents a step-by-step guide, providing the principles of each method followed by the application of variants, making the reference easy to use and follow


Quantifying Uncertainty in Subsurface Systems

Quantifying Uncertainty in Subsurface Systems

Author: Céline Scheidt

Publisher: John Wiley & Sons

Published: 2018-05-08

Total Pages: 645

ISBN-13: 1119325862

DOWNLOAD EBOOK

Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: A multi-disciplinary treatment of uncertainty quantification Case studies with actual data that will appeal to methodology developers A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources


Applied Statistical Modeling and Data Analytics

Applied Statistical Modeling and Data Analytics

Author: Srikanta Mishra

Publisher: Elsevier

Published: 2017-10-27

Total Pages: 252

ISBN-13: 0128032804

DOWNLOAD EBOOK

Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications


Uncertainty Quantification in Laminated Composites

Uncertainty Quantification in Laminated Composites

Author: Sudip Dey

Publisher: CRC Press

Published: 2018-09-19

Total Pages: 375

ISBN-13: 1498784461

DOWNLOAD EBOOK

Over the last few decades, uncertainty quantification in composite materials and structures has gained a lot of attention from the research community as a result of industrial requirements. This book presents computationally efficient uncertainty quantification schemes following meta-model-based approaches for stochasticity in material and geometric parameters of laminated composite structures. Several metamodels have been studied and comparative results have been presented for different static and dynamic responses. Results for sensitivity analyses are provided for a comprehensive coverage of the relative importance of different material and geometric parameters in the global structural responses.


Uncertainty, Modeling, and Decision Making in Geotechnics

Uncertainty, Modeling, and Decision Making in Geotechnics

Author: Kok-Kwang Phoon

Publisher: CRC Press

Published: 2023-12-11

Total Pages: 521

ISBN-13: 1003801250

DOWNLOAD EBOOK

Uncertainty, Modeling, and Decision Making in Geotechnics shows how uncertainty quantification and numerical modeling can complement each other to enhance decision-making in geotechnical practice, filling a critical gap in guiding practitioners to address uncertainties directly. The book helps practitioners acquire a working knowledge of geotechnical risk and reliability methods and guides them to use these methods wisely in conjunction with data and numerical modeling. In particular, it provides guidance on the selection of realistic statistics and a cost-effective, accessible method to address different design objectives, and for different problem settings, and illustrates the value of this to decision-making using realistic examples. Bringing together statistical characterization, reliability analysis, reliability-based design, probabilistic inverse analysis, and physical insights drawn from case studies, this reference guide from an international team of experts offers an excellent resource for state-of-the-practice uncertainty-informed geotechnical design for specialist practitioners and the research community.