This second volume is arranged in four sections: Analysis contains papers which compare the attributes of various approaches to uncertainty. Tools provides sufficient information for the reader to implement uncertainty calculations. Papers in the Theory section explain various approaches to uncertainty. The Applications section describes the difficulties involved in, and the results produced by, incorporating uncertainty into actual systems.
This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.
Hardbound. How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.
This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.
Uncertainty in Artificial Intelligence: Proceedings of the Eighth Conference (1992) covers the papers presented at the Eighth Conference on Uncertainty in Artificial Intelligence, held at Stanford University on July 17-19, 1992. The book focuses on the processes, methodologies, technologies, and approaches involved in artificial intelligence. The selection first offers information on Relative Evidential Support (RES), modal logics for qualitative possibility and beliefs, and optimizing causal orderings for generating DAGs from data. Discussions focus on reversal, swap, and unclique operators, modal representation of possibility, and beliefs and conditionals. The text then examines structural controllability and observability in influence diagrams, lattice-based graded logic, and dynamic network models for forecasting. The manuscript takes a look at reformulating inference problems through selective conditioning, entropy and belief networks, parallelizing probabilistic inference, and a symbolic approach to reasoning with linguistic quantifiers. The text also ponders on sidestepping the triangulation problem in Bayesian net computations; exploring localization in Bayesian networks for large expert systems; and expressing relational and temporal knowledge in visual probabilistic networks. The selection is a valuable reference for researchers interested in artificial intelligence.
This volume, like its predecessors, reflects the cutting edge of research on the automation of reasoning under uncertainty.A more pragmatic emphasis is evident, for although some papers address fundamental issues, the majority address practical issues. Topics include the relations between alternative formalisms (including possibilistic reasoning), Dempster-Shafer belief functions, non-monotonic reasoning, Bayesian and decision theoretic schemes, and new inference techniques for belief nets. New techniques are applied to important problems in medicine, vision, robotics, and natural language understanding.
This book demonstrates different methods (as well as real-life examples) of handling uncertainty like probability and Bayesian theory, Dempster-Shafer theory, certainty factor and evidential reasoning, fuzzy logic-based approach, utility theory and expected utility theory. At the end, highlights will be on the use of these methods which can help to make decisions under uncertain situations. This book assists scholars and students who might like to learn about this area as well as others who may have begun without a formal presentation. The book is comprehensive, but it prohibits unnecessary mathematics.
Formal ways of representing uncertainty and various logics for reasoning about it; updated with new material on weighted probability measures, complexity-theoretic considerations, and other topics. In order to deal with uncertainty intelligently, we need to be able to represent it and reason about it. In this book, Joseph Halpern examines formal ways of representing uncertainty and considers various logics for reasoning about it. While the ideas presented are formalized in terms of definitions and theorems, the emphasis is on the philosophy of representing and reasoning about uncertainty. Halpern surveys possible formal systems for representing uncertainty, including probability measures, possibility measures, and plausibility measures; considers the updating of beliefs based on changing information and the relation to Bayes' theorem; and discusses qualitative, quantitative, and plausibilistic Bayesian networks. This second edition has been updated to reflect Halpern's recent research. New material includes a consideration of weighted probability measures and how they can be used in decision making; analyses of the Doomsday argument and the Sleeping Beauty problem; modeling games with imperfect recall using the runs-and-systems approach; a discussion of complexity-theoretic considerations; the application of first-order conditional logic to security. Reasoning about Uncertainty is accessible and relevant to researchers and students in many fields, including computer science, artificial intelligence, economics (particularly game theory), mathematics, philosophy, and statistics.