In the first approximation, decision making is nothing else but an optimization problem: We want to select the best alternative. This description, however, is not fully accurate: it implicitly assumes that we know the exact consequences of each decision, and that, once we have selected a decision, no constraints prevent us from implementing it. In reality, we usually know the consequences with some uncertainty, and there are also numerous constraints that needs to be taken into account. The presence of uncertainty and constraints makes decision making challenging. To resolve these challenges, we need to go beyond simple optimization, we also need to get a good understanding of how the corresponding systems and objects operate, a good understanding of why we observe what we observe – this will help us better predict what will be the consequences of different decisions. All these problems – in relation to different application areas – are the main focus of this book.
This book presents extended versions of selected papers from the annual International Workshops on Constraint Programming and Decision Making from 2016 to 2018. The papers address all stages of decision-making under constraints: (1) precisely formulating the problem of multi-criteria decision-making; (2) determining when the corresponding decision problem is algorithmically solvable; (3) finding the corresponding algorithms and making these algorithms as efficient as possible; and (4) taking into account interval, probabilistic, and fuzzy uncertainty inherent in the corresponding decision-making problems. In many application areas, it is necessary to make effective decisions under constraints, and there are several area-specific techniques for such decision problems. However, because they are area-specific, it is not easy to apply these techniques in other application areas. As such, the annual International Workshops on Constraint Programming and Decision Making focus on cross-fertilization between different areas, attracting researchers and practitioners from around the globe. The book includes numerous papers describing applications, in particular, applications to engineering, such as control of unmanned aerial vehicles, and vehicle protection against improvised explosion devices.
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
In many application areas, it is necessary to make effective decisions under constraints. Several area-specific techniques are known for such decision problems; however, because these techniques are area-specific, it is not easy to apply each technique to other applications areas. Cross-fertilization between different application areas is one of the main objectives of the annual International Workshops on Constraint Programming and Decision Making. Those workshops, held in the US (El Paso, Texas), in Europe (Lyon, France) and in Asia (Novosibirsk, Russia), from 2008 to 2012, have attracted researchers and practitioners from all over the world. This volume presents extended versions of selected papers from those workshops. These papers deal with all stages of decision making under constraints: (1) formulating the problem of multi-criteria decision making in precise terms, (2) determining when the corresponding decision problem is algorithmically solvable; (3) finding the corresponding algorithms and making these algorithms as efficient as possible and (4) taking into account interval, probabilistic and fuzzy uncertainty inherent in the corresponding decision making problems. The resulting application areas include environmental studies (selecting the best location for a meteorological tower), biology (selecting the most probable evolution history of a species), and engineering (designing the best control for a magnetic levitation train).
This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.
This book discusses the recent advances in natural computation, fuzzy systems and knowledge discovery. Presenting selected, peer-reviewed papers from the 15th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2019), held in Kunming, China, from 20 to 22 July 2019, it is a useful resource for researchers, including professors and graduate students, as well as R&D staff in industry.
Managing uncertainties in industrial systems is a daily challenge to ensure improved design, robust operation, accountable performance and responsive risk control. Authored by a leading European network of experts representing a cross section of industries, Uncertainty in Industrial Practice aims to provide a reference for the dissemination of uncertainty treatment in any type of industry. It is concerned with the quantification of uncertainties in the presence of data, model(s) and knowledge about the system, and offers a technical contribution to decision-making processes whilst acknowledging industrial constraints. The approach presented can be applied to a range of different business contexts, from research or early design through to certification or in-service processes. The authors aim to foster optimal trade-offs between literature-referenced methodologies and the simplified approaches often inevitable in practice, owing to data, time or budget limitations of technical decision-makers. Uncertainty in Industrial Practice: Features recent uncertainty case studies carried out in the nuclear, air & space, oil, mechanical and civil engineering industries set in a common methodological framework. Presents methods for organizing and treating uncertainties in a generic and prioritized perspective. Illustrates practical difficulties and solutions encountered according to the level of complexity, information available and regulatory and financial constraints. Discusses best practice in uncertainty modeling, propagation and sensitivity analysis through a variety of statistical and numerical methods. Reviews recent standards, references and available software, providing an essential resource for engineers and risk analysts in a wide variety of industries. This book provides a guide to dealing with quantitative uncertainty in engineering and modelling and is aimed at practitioners, including risk-industry regulators and academics wishing to develop industry-realistic methodologies.
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.
In a world of increasing dependence on information technology, the prevention of cyberattacks on a nation's important computer and communications systems and networks is a problem that looms large. Given the demonstrated limitations of passive cybersecurity defense measures, it is natural to consider the possibility that deterrence might play a useful role in preventing cyberattacks against the United States and its vital interests. At the request of the Office of the Director of National Intelligence, the National Research Council undertook a two-phase project aimed to foster a broad, multidisciplinary examination of strategies for deterring cyberattacks on the United States and of the possible utility of these strategies for the U.S. government. The first phase produced a letter report providing basic information needed to understand the nature of the problem and to articulate important questions that can drive research regarding ways of more effectively preventing, discouraging, and inhibiting hostile activity against important U.S. information systems and networks. The second phase of the project entailed selecting appropriate experts to write papers on questions raised in the letter report. A number of experts, identified by the committee, were commissioned to write these papers under contract with the National Academy of Sciences. Commissioned papers were discussed at a public workshop held June 10-11, 2010, in Washington, D.C., and authors revised their papers after the workshop. Although the authors were selected and the papers reviewed and discussed by the committee, the individually authored papers do not reflect consensus views of the committee, and the reader should view these papers as offering points of departure that can stimulate further work on the topics discussed. The papers presented in this volume are published essentially as received from the authors, with some proofreading corrections made as limited time allowed.
"Schragenheim, Camp and Surace, three leaders of TOC community, are tackling one of value destroyers of corporations—the misuse and abuse of traditional cost accounting. This book develops a practical methodology for better decision making by looking at the impact of certain types of decisions on a company’s bottom line. This well-defined methodology allows mid-managers, higher level managers and financial staff to create real value by concentrating on what truly matters." Boaz Ronen, Professor Emeritus, Coller School of Management, Tel Aviv University, Tel Aviv, Israel "Throughput Economics is a must read for entrepreneurs and managers who want to make their organizations more and more antifragile." Andrea Zattoni, CEO of Antifragility, Italy "Management accounting is a dry topic. Throughput Economics is not—managers can learn a lot they can apply to their company from it." Rudolf Burkhart, Business Development Director, Vistem Gmbh, Germany Throughput Economics challenges the current thinking of how to evaluate cost, risks and rewards of any deal or any other new market opportunity being considered, especially the practice of calculating cost-per-unit. Instead, this book offers a process that directly answers the critical question: If we accept the proposed decision, will the performance of the organization improve? The process involves the intuition of the key people in the organization, together with the relevant data, to come up with the best available information from which to form a reasonable range of net profit, when the considered decision is added on top of all the other activities undertaken by the organization. The process is explained and demonstrated using a variety of cases where the organization faces a new non-trivial idea, along with a detailed explanation of how it should work, including software support that provides very quick response to many what-if suggestions. This book offers a new and well-defined process, applicable to every organization, that considers both financial impacts and capacity limitations and, also, includes the impact of uncertainty by providing the range of reasonable results rather than one number, which is always proven wrong in the end. Overall, the book provides a holistic method for simplified decision making in seemingly complex or shifting environments using a constraints mindset to facilitate companies’ realization, for the first time, their true potential.