Ultrasound in Oncology: Application of Big Data and Artificial Intelligence
Author: Hui-Xiong Xu
Publisher: Frontiers Media SA
Published: 2022-02-09
Total Pages: 129
ISBN-13: 288974311X
DOWNLOAD EBOOKRead and Download eBook Full
Author: Hui-Xiong Xu
Publisher: Frontiers Media SA
Published: 2022-02-09
Total Pages: 129
ISBN-13: 288974311X
DOWNLOAD EBOOKAuthor: Erik R. Ranschaert
Publisher: Springer
Published: 2019-01-29
Total Pages: 369
ISBN-13: 3319948784
DOWNLOAD EBOOKThis book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Author: Diego Oliva
Publisher: Springer Nature
Published: 2021-07-19
Total Pages: 594
ISBN-13: 3030697444
DOWNLOAD EBOOKThis book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.
Author: Issam El Naqa
Publisher: Springer
Published: 2015-06-19
Total Pages: 336
ISBN-13: 3319183052
DOWNLOAD EBOOKThis book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
Author: George Bebis
Publisher: Springer Nature
Published: 2021-12-11
Total Pages: 91
ISBN-13: 3030912418
DOWNLOAD EBOOKThis book constitutes the refereed proceedings of the Third International Symposium on Mathematical and Computational Oncology, ISMCO 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 3 full papers and 4 short papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in topical sections named: statistical and machine learning methods for cancer research; mathematical modeling for cancer research; spatio-temporal tumor modeling and simulation; general cancer computational biology; mathematical modeling for cancer research; computational methods for anticancer drug development.
Author:
Publisher: BoD – Books on Demand
Published: 2019-07-31
Total Pages: 142
ISBN-13: 1789840171
DOWNLOAD EBOOKArtificial intelligence (AI) is taking on an increasingly important role in our society today. In the early days, machines fulfilled only manual activities. Nowadays, these machines extend their capabilities to cognitive tasks as well. And now AI is poised to make a huge contribution to medical and biological applications. From medical equipment to diagnosing and predicting disease to image and video processing, among others, AI has proven to be an area with great potential. The ability of AI to make informed decisions, learn and perceive the environment, and predict certain behavior, among its many other skills, makes this application of paramount importance in today's world. This book discusses and examines AI applications in medicine and biology as well as challenges and opportunities in this fascinating area.
Author: Adam Bohr
Publisher: Academic Press
Published: 2020-06-21
Total Pages: 385
ISBN-13: 0128184396
DOWNLOAD EBOOKArtificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author: Eric Topol
Publisher: Basic Books
Published: 2019-03-12
Total Pages: 388
ISBN-13: 1541644646
DOWNLOAD EBOOKA Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.
Author: Mahesh K Shetty
Publisher: Springer
Published: 2014-09-19
Total Pages: 464
ISBN-13: 1493912674
DOWNLOAD EBOOKThis book presents the current trends and practices in breast imaging. Topics include mammographic interpretation; breast ultrasound; breast MRI; management of the symptomatic breast in young, pregnant and lactating women; breast intervention with imaging pathological correlation; the postoperative breast and current and emerging technologies in breast imaging. It emphasizes the importance of fostering a multidisciplinary approach in the diagnosis and treatment of breast diseases. Featuring more than 800 high-resolution images and showcasing contributions from leading authorities in the screening, diagnosis and management of the breast cancer patient, Breast Cancer Screening and Diagnosis is a valuable resource for radiologists, oncologists and surgeons.
Author: Jun Deng
Publisher: CRC Press
Published: 2019-03-07
Total Pages: 323
ISBN-13: 1351801112
DOWNLOAD EBOOKBig Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.