Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures

Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures

Author: Anjan Barman

Publisher: Springer

Published: 2017-12-27

Total Pages: 166

ISBN-13: 3319662961

DOWNLOAD EBOOK

This book provides a comprehensive overview of the latest developments in the field of spin dynamics and magnetic damping. It discusses the various ways to tune damping, specifically, dynamic and static control in a ferromagnetic layer/heavy metal layer. In addition, it addresses all optical detection techniques for the investigation of modulation of damping, for example, the time-resolved magneto-optical Kerr effect technique.


Spin Transfer Torque Based Devices, Circuits, and Memory

Spin Transfer Torque Based Devices, Circuits, and Memory

Author: Brajesh Kumar Kaushik

Publisher: Artech House

Published: 2016-10-31

Total Pages: 297

ISBN-13: 1630814369

DOWNLOAD EBOOK

This first-of-its-kind resource is completely dedicated to spin transfer torque (STT) based devices, circuits, and memory. A wide range of topics including, STT MRAMs, MTJ based logic circuits, simulation and modeling strategies, fabrication of MTJ CMOS circuits, non-volatile computing with STT MRAMs, all spin logic, and spin information processing are explored. State-of-the-art modeling and simulation strategies of spin transfer torque based devices and circuits in a lucid manner are covered. Professional engineers find practical guidance in the development of micro-magnetic models of spin-torque based devices in object-oriented micro-magnetic framework (OOMMF) and compact modeling of STT based magnetic tunnel junctions in Verilog-A. The performance parameters and design aspects of STT MRAMs and MTJ based hybrid spintronic CMOS circuits are covered and case studies are presented demonstrating STT-MRAM design and simulation with a detailed analysis of results. The fundamental physics of STT based devices are presented with an emphasis on new advancements from recent years. Advanced topics are also explored including, micromagnetic simulations, multi-level STT MRAMs, giant spin Hall Effect (GSHE) based MRAMs, non-volatile computing, all spin logic and all spin information processing.


Spin Current

Spin Current

Author: Sadamichi Maekawa

Publisher: Oxford University Press

Published: 2017

Total Pages: 541

ISBN-13: 0198787073

DOWNLOAD EBOOK

In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.


Ultrafast Magnetism I

Ultrafast Magnetism I

Author: Jean-Yves Bigot

Publisher: Springer

Published: 2014-08-05

Total Pages: 361

ISBN-13: 3319077430

DOWNLOAD EBOOK

This volume on Ultrafast Magnetism is a collection of articles presented at the international “Ultrafast Magnetization Conference” held at the Congress Center in Strasbourg, France, from October 28th to November 1st, 2013. This first conference, which is intended to be held every two years, received a wonderful attendance and gathered scientists from 27 countries in the field of Femtomagnetism, encompassing many theoretical and experimental research subjects related to the spins dynamics in bulk or nanostructured materials. The participants appreciated this unique opportunity for discussing new ideas and debating on various physical interpretations of the reported phenomena. The format of a single session with many oral contributions as well as extensive time for poster presentations allowed researchers to have a detailed overview of the field. Importantly, one could sense that, in addition to studying fundamental magnetic phenomena, ultrafast magnetism has entered in a phase where applied physics and engineering are playing an important role. Several devices are being proposed with exciting R&D perspectives in the near future, in particular for magnetic recording, time resolved magnetic imaging and spin polarized transport, therefore establishing connections between various aspects of modern magnetism. Simultaneously, the diversity of techniques and experimental configurations has flourished during the past years, employing in particular Xrays, visible, infra-red and terahertz radiations. It was also obvious that an important effort is being made for tracking the dynamics of spins and magnetic domains at the nanometer scale, opening the pathway to exciting future developments. The concerted efforts between theoretical and experimental approaches for explaining the dynamical behaviors of angular momentum and energy levels, on different classes of magnetic materials, are worth pointing out. Finally it was unanimously recognized that the quality of the scientific oral and poster presentations contributed to bring the conference to a very high international standard.


Ultra-High-Density Magnetic Recording

Ultra-High-Density Magnetic Recording

Author: Gaspare Varvaro

Publisher: CRC Press

Published: 2016-03-30

Total Pages: 528

ISBN-13: 9814669598

DOWNLOAD EBOOK

Today magnetic recording is still the leading technology for mass data storage. Its dominant role is being reinforced by the success of cloud computing, which requires storing and managing huge amounts of data on a multitude of servers. Nonetheless, the hard-disk storage industry is presently at a crossroads as the current magnetic recording techno


Handbook of Spin Transport and Magnetism

Handbook of Spin Transport and Magnetism

Author: Evgeny Y. Tsymbal

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 797

ISBN-13: 1439803781

DOWNLOAD EBOOK

In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal


Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing

Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing

Author: Jayasimha Atulasimha

Publisher: John Wiley & Sons

Published: 2016-01-27

Total Pages: 352

ISBN-13: 1118869257

DOWNLOAD EBOOK

Nanomagnetic and spintronic computing devices are strong contenders for future replacements of CMOS. This is an important and rapidly evolving area with the semiconductor industry investing significantly in the study of nanomagnetic phenomena and in developing strategies to pinpoint and regulate nanomagnetic reliably with a high degree of energy efficiency. This timely book explores the recent and on-going research into nanomagnetic-based technology. Key features: Detailed background material and comprehensive descriptions of the current state-of-the-art research on each topic. Focuses on direct applications to devices that have potential to replace CMOS devices for computing applications such as memory, logic and higher order information processing. Discusses spin-based devices where the spin degree of freedom of charge carriers are exploited for device operation and ultimately information processing. Describes magnet switching methodologies to minimize energy dissipation. Comprehensive bibliographies included for each chapter enabling readers to conduct further research in this field. Written by internationally recognized experts, this book provides an overview of a rapidly burgeoning field for electronic device engineers, field-based applied physicists, material scientists and nanotechnologists. Furthermore, its clear and concise form equips readers with the basic understanding required to comprehend the present stage of development and to be able to contribute to future development. Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing is also an indispensable resource for students and researchers interested in computer hardware, device physics and circuits design.


Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Author: Evgeny Y. Tsymbal

Publisher: CRC Press

Published: 2019-05-09

Total Pages: 735

ISBN-13: 0429750897

DOWNLOAD EBOOK

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.


Atomistic Spin Dynamics

Atomistic Spin Dynamics

Author: Olle Eriksson

Publisher: Oxford University Press

Published: 2017

Total Pages: 265

ISBN-13: 0198788665

DOWNLOAD EBOOK

Several large experimental facilities that focus on detection and probing magnetization dynamics have been realized in Europe, USA and Japan. This book covers theoretical and practical aspects of the vibrant and emerging research field of magnetization dynamics.