Ultra-Thin Sensors and Data Conversion Techniques for Hybrid System-in-Foil

Ultra-Thin Sensors and Data Conversion Techniques for Hybrid System-in-Foil

Author: Mourad Elsobky

Publisher: Springer Nature

Published: 2022-03-18

Total Pages: 153

ISBN-13: 3030977269

DOWNLOAD EBOOK

This book reports on the design, fabrication and characterization of a set of flexible electronic components, including on-foil sensors, organic thin-film transistors and ultra-thin chips. The core of the work is on showing how to combine high-performance integrated circuits with large-area electronic components on a single polymeric foil, to realize smart electronic systems for different applications, such as temperature, humidity and mechanical stress sensors. The book offers an extensive introduction to Hybrid System-in-Foil technology (HySiF), and related on-chip/on-foil passive and active components. It presents six case studies designed to highlight key HySiF challenges, together with the methodology to address those challenges. Last but not least, it describes the development of a reconfigurable, energy-efficient Analog-to-Digital Converter for HySiF. All in all, this book provides readers with extensive information on the state of the art in the design and characterization of integrated circuits and hybrid electronic systems on flexible polymeric substrates. By describing significant advances in organic thin-film transistor technology, this work is expected to pave the way to future developments in the area of energy-efficient smart sensors and integrated circuits.


Hybrid Systems-in-Foil

Hybrid Systems-in-Foil

Author: Mourad Elsobky

Publisher: Cambridge University Press

Published: 2021-10-14

Total Pages: 92

ISBN-13: 1108983383

DOWNLOAD EBOOK

Hybrid Systems-in-Foil (HySiF) is a concept that extends the potential of conventional More-than-More Systems-in/on-Package (SiPs and SoPs) to the flexible electronics world. In HySiF, an economical implementation of flexible electronic systems is possible by integrating a minimum number of embedded silicon chips and a maximum number of on-foil components. Here, the complementary characteristics of CMOS SoCs and larger area organic and printed electronics are combined in a HySiF-compatible polymeric substrate. Within the HySiF scope, the fabrication process steps and the integration design rules with all the accompanying boundary conditions concerning material compatibility, surface properties, and thermal budget, are defined. This Element serves as an introduction to the HySiF concept. A summary of recent ultra-thin chip fabrication and flexible packaging techniques is provided. Several bendable electronic components are presented demonstrating the benefits of HySiF. Finally, prototypes of flexible wireless sensor systems that adopt the HySiF concept are demonstrated.


Micro Energy Harvesting

Micro Energy Harvesting

Author: Danick Briand

Publisher: John Wiley & Sons

Published: 2015-06-22

Total Pages: 492

ISBN-13: 3527319026

DOWNLOAD EBOOK

With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.


Handbook of Modern Sensors

Handbook of Modern Sensors

Author: Jacob Fraden

Publisher: Springer Science & Business Media

Published: 2006-04-29

Total Pages: 596

ISBN-13: 0387216049

DOWNLOAD EBOOK

Seven years have passed since the publication of the previous edition of this book. During that time, sensor technologies have made a remarkable leap forward. The sensitivity of the sensors became higher, the dimensions became smaller, the sel- tivity became better, and the prices became lower. What have not changed are the fundamental principles of the sensor design. They are still governed by the laws of Nature. Arguably one of the greatest geniuses who ever lived, Leonardo Da Vinci, had his own peculiar way of praying. He was saying, “Oh Lord, thanks for Thou do not violate your own laws. ” It is comforting indeed that the laws of Nature do not change as time goes by; it is just our appreciation of them that is being re?ned. Thus, this new edition examines the same good old laws of Nature that are employed in the designs of various sensors. This has not changed much since the previous edition. Yet, the sections that describe the practical designs are revised substantially. Recent ideas and developments have been added, and less important and nonessential designs were dropped. Probably the most dramatic recent progress in the sensor technologies relates to wide use of MEMS and MEOMS (micro-electro-mechanical systems and micro-electro-opto-mechanical systems). These are examined in this new edition with greater detail. This book is about devices commonly called sensors. The invention of a - croprocessor has brought highly sophisticated instruments into our everyday lives.


Understanding Smart Sensors

Understanding Smart Sensors

Author: Randy Frank

Publisher: Artech House Publishers

Published: 1996

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

"Two of the most important trends in sensor development in recent years have been advances in micromachined sensing elements of all kinds, and the increase in intelligence applied at the sensor level. This book addresses both, and provides a good overview of current technology". -- I&CS


Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting

Author: Alper Erturk

Publisher: John Wiley & Sons

Published: 2011-04-04

Total Pages: 377

ISBN-13: 1119991358

DOWNLOAD EBOOK

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.