Stochastic and Differential Games

Stochastic and Differential Games

Author: Martino Bardi

Publisher: Springer Science & Business Media

Published: 1999-06

Total Pages: 404

ISBN-13: 9780817640293

DOWNLOAD EBOOK

The theory of two-person, zero-sum differential games started at the be­ ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton­ Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe­ sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv­ ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po­ sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.


Handbook of Dynamic Game Theory

Handbook of Dynamic Game Theory

Author: Tamer Basar

Publisher:

Published: 19??

Total Pages:

ISBN-13: 9783319273358

DOWNLOAD EBOOK

Résumé : "This will be a two-part handbook on Dynamic Game Theory and part of the Springer Reference program. Part I will be on the fundamentals and theory of dynamic games. It will serve as a quick reference and a source of detailed exposure to topics in dynamic games for a broad community of researchers, educators, practitioners, and students. Each topic will be covered in 2-3 chapters with one introducing basic theory and the other one or two covering recent advances and/or special topics. Part II will be on applications in fields such as economics, management science, engineering, biology, and the social sciences."


Stochastic and Differential Games

Stochastic and Differential Games

Author: Martino Bardi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 388

ISBN-13: 1461215927

DOWNLOAD EBOOK

The theory of two-person, zero-sum differential games started at the be ginning of the 1960s with the works of R. Isaacs in the United States and L.S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P.P. Varaiya, E. Roxin, R.J. Elliott and N.J. Kalton, N.N. Krasovskii, and A.I. Subbotin (see their book Po sitional Differential Games, Nauka, 1974, and Springer, 1988), and L.D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M.G. Crandall and P.-L.


Optimal Control Theory

Optimal Control Theory

Author: Suresh P. Sethi

Publisher: Taylor & Francis US

Published: 2006

Total Pages: 536

ISBN-13: 9780387280929

DOWNLOAD EBOOK

Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as a foundation for the book, which the authors have applied to business management problems developed from their research and classroom instruction. Sethi and Thompson have provided management science and economics communities with a thoroughly revised edition of their classic text on Optimal Control Theory. The new edition has been completely refined with careful attention to the text and graphic material presentation. Chapters cover a range of topics including finance, production and inventory problems, marketing problems, machine maintenance and replacement, problems of optimal consumption of natural resources, and applications of control theory to economics. The book contains new results that were not available when the first edition was published, as well as an expansion of the material on stochastic optimal control theory.


Stochastic Differential Games. Theory and Applications

Stochastic Differential Games. Theory and Applications

Author: Kandethody M. Ramachandran

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 253

ISBN-13: 9491216473

DOWNLOAD EBOOK

The subject theory is important in finance, economics, investment strategies, health sciences, environment, industrial engineering, etc.


A Course in Stochastic Game Theory

A Course in Stochastic Game Theory

Author: Eilon Solan

Publisher: Cambridge University Press

Published: 2022-05-26

Total Pages: 279

ISBN-13: 1316516334

DOWNLOAD EBOOK

This book for beginning graduate students presents a course on stochastic games and the mathematical methods used in their analysis.


Deterministic and Stochastic Optimal Control

Deterministic and Stochastic Optimal Control

Author: Wendell H. Fleming

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 231

ISBN-13: 1461263808

DOWNLOAD EBOOK

This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.


Backward Stochastic Differential Equations

Backward Stochastic Differential Equations

Author: N El Karoui

Publisher: CRC Press

Published: 1997-01-17

Total Pages: 236

ISBN-13: 9780582307339

DOWNLOAD EBOOK

This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.


Game Theory, Alive

Game Theory, Alive

Author: Anna R. Karlin

Publisher: American Mathematical Soc.

Published: 2017-04-27

Total Pages: 400

ISBN-13: 1470419823

DOWNLOAD EBOOK

We live in a highly connected world with multiple self-interested agents interacting and myriad opportunities for conflict and cooperation. The goal of game theory is to understand these opportunities. This book presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. This is done by focusing on theoretical highlights (e.g., at least six Nobel Prize winning results are developed from scratch) and by presenting exciting connections of game theory to other fields such as computer science (algorithmic game theory), economics (auctions and matching markets), social choice (voting theory), biology (signaling and evolutionary stability), and learning theory. Both classical topics, such as zero-sum games, and modern topics, such as sponsored search auctions, are covered. Along the way, beautiful mathematical tools used in game theory are introduced, including convexity, fixed-point theorems, and probabilistic arguments. The book is appropriate for a first course in game theory at either the undergraduate or graduate level, whether in mathematics, economics, computer science, or statistics. The importance of game-theoretic thinking transcends the academic setting—for every action we take, we must consider not only its direct effects, but also how it influences the incentives of others.


Handbook of Stochastic Analysis and Applications

Handbook of Stochastic Analysis and Applications

Author: D. Kannan

Publisher: CRC Press

Published: 2001-10-23

Total Pages: 800

ISBN-13: 9780824706609

DOWNLOAD EBOOK

An introduction to general theories of stochastic processes and modern martingale theory. The volume focuses on consistency, stability and contractivity under geometric invariance in numerical analysis, and discusses problems related to implementation, simulation, variable step size algorithms, and random number generation.