With today's focus on targeted and minimally invasive therapies, photodynamic therapy (PDT) is now being studied and used to combat many disease states and to investigate critical biological questions. This groundbreaking resource brings you the latest advances in photodynamic therapy and offers you a solid understanding of the design, delivery and dosimetry of the three basic ingredients of PDT - photosensitizers, light and oxygen. The book covers novel areas of mechanistic and innovative translational approaches. Moreover, it gives you an overview of the important medical applications of PDT, including approved treatments, clinical trials, and investigated therapies for cancer and non-malignant diseases.
Photodynamic therapy is a proven effective treatment of actinically damaged skin cells, nonmelanoma skin cancers, and acne and other pilosebaceous conditions. As an agent for general facial rejuvenatin it has untapped potential. The current state of PDT therapy and future applications are discussed in detail in this exciting new volume. Throughout, the focus is on evidence-based clinical uses of PDT, including pretreatment regimens, avoidance and management of complications, and posttreatment suggestions.
Aiding researchers seeking to eliminate multi-step procedures, reduce delays in treatment and ease patient care, Cancer Theranostics reviews, assesses, and makes pertinent clinical recommendations on the integration of comprehensive in vitro diagnostics, in vivo molecular imaging, and individualized treatments towards the personalization of cancer treatment. Cancer Theranostics describes the identification of novel biomarkers to advance molecular diagnostics of cancer. The book encompasses new molecular imaging probes and techniques for early detection of cancer, and describes molecular imaging-guided cancer therapy. Discussion also includes nanoplatforms incorporating both cancer imaging and therapeutic components, as well as clinical translation and future perspectives. - Supports elimination of multi-step approaches and reduces delays in treatments through combinatorial diagnosis and therapy - Fully assesses cancer theranostics across the emergent field, with discussion of biomarkers, molecular imaging, imaging guided therapy, nanotechnology, and personalized medicine - Content bridges laboratory, clinic, and biotechnology industries to advance biomedical science and improve patient management
Age-related Macular Degeneration (AMD) is the leading cause of vision loss and blindness in the developed countries. In the past decade, great progress has been made in understanding the pathobiology and genetics of this blinding disease, as well as in finding new therapies for its treatment. These include the discovery of several genes that are associated with the risk of AMD, new anti-VEGF treatments for wet AMD and new imaging techniques to diagnose and monitor the AMD. All chapters in this book were contributed by outstanding research scientists and clinicians in the area of AMD. I hope this timely book will provide the basic scientists and clinicians with an opportunity to learn about the recent advances in the field of AMD.
For centuries, light has been used to cure various diseases. However, it is only recently that a new medical field has arisen. Photodynamic therapy (PDT), also known as photochemotherapy, is a fast growing technique which was initially devoted to cancer care but which is now recognised as a promising treatment technique in a variety of clinical fields. Written by recognised experts, Photodynamic Therapy provides a comprehensive explanation of what PDT is and how it has developed as a technique in areas such as the detection of lung cancer and applications in dermatology, gynaecology and neurosurgery. This book is ideal both as an introduction to PDT and as an informative text for those wishing to expand their knowledge. Practitioners in biological sciences, biotechnology and medicinal and pharmaceutical chemistry will find it an invaluable source of information.
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.
Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamental
This volume provides a comprehensive review of resistance induced by photodynamic therapy (PDT) in tumor cells. Understanding the underlying mechanisms in this process leads to the improvement of therapeutic modality, in combination with chemotherapy, immunotherapy, and radiotherapy. Photodynamic therapy is a minimally invasive therapeutic procedure that can exert a selective or preferential cytotoxic activity toward malignant cells. The procedure involves administration of an intrinsically non-toxic photosensitizing agent (PS) followed by irradiation at a wavelength corresponding to a visible absorption band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Studies reveal that PDT can be curative, particularly in early stage tumors and this volume explores the potential of PDT, but also reveals strategic approaches to overcome resistance in tumor cells.
Biological Synthesis of Nanoparticles and Their Applications gives insight into the synthesis of nanoparticles utilizing the natural routes. It demonstrates various strategies for the synthesis of nanoparticles utilizing plants, microscopic organisms like bacteria, fungi, algae and so forth. It orchestrates interdisciplinary hypothesis, ideas, definitions, models and discoveries associated with complex cell of the prokaryotes and eukaryotes. Highlights: Discusses biological approach towards the nanoparticle synthesis Describes the role of nanotechnology in the field of medicine and its medical devices Covers application and usage of the chemicals at the molecular level to act as catalysts and binding products for both organic and inorganic Chemical Reactions Reviews application in physics such as solar cells, photovoltaics and other usage Microorganisms can aggregate and detoxify substantial metals because of different reductase enzymes, which can diminish metal salts to metal nanoparticles. The readers after going through this book will have detailed account of mechanism of bio-synthesis of nanoparticles.
The continuous progress in the understanding of molecular processes of disease formation and progression attributes an increasing importance to biomedical molecular imaging methods. The purpose of this workshop was to discuss and overview multiple applications and emerging technologies in the area of diagnostic imaging including its fundamental capabilities in preclinical research, the opportunities for medical care, and the options involving therapeutic concepts. The book provides the reader with state-of-the-art information on the different aspects of diagnostic imaging, illuminating new developments in molecular biology, imaging agents and molecular probe design, and therapeutic techniques.