Two-phase Emission Detectors

Two-phase Emission Detectors

Author: Dmitry Yu Akimov

Publisher: World Scientific

Published: 2021-07-15

Total Pages: 353

ISBN-13: 9811231109

DOWNLOAD EBOOK

One of the rapidly developing areas of modern experimental nuclear physics is non-accelerator experiments using low-background detectors. Such experiments, as a rule, are aimed at solving problems that are of fundamental importance for understanding the structure of the Universe, checking the Standard Model of elementary particles, and looking for new physics behind the observable world. The most interesting tasks include the search for dark matter in the form of new weakly interacting particles, the search for neutrinoless double beta decay, the determination of the magnetic moment of the neutrino, the study of neutrino oscillation and new types of interaction of elementary particles, such as coherent neutrino scattering off heavy nuclei.All these processes, occurring with extremely low cross sections, require the development of efficient large-mass detectors capable of detecting small energy releases down to individual ionization electrons. An effective method to do this is the emission method of detecting ionizing particles in two-phase media, which has been proposed at Moscow Engineering Physics Institute (MEPhI) 50 years ago. The origin of this technique can be traced to the research headed by Prof. Boris A Dolgoshein, whose study focus on the properties of condensed noble gases as a means to develop a tracking streamer chamber with a high-density working medium.This monograph, devoted exclusively to two-phase emission detectors, considers the technology's basic features while taking into account new developments introduced into experimental practice in the last ten years since the publication of its predecessor, Emission Detectors (Bolozdynya, 2010).


Emission Detectors

Emission Detectors

Author: Alexander I Bolozdynya

Publisher: World Scientific

Published: 2010-07-30

Total Pages: 223

ISBN-13: 9814470090

DOWNLOAD EBOOK

After decades of research and development, emission detectors have recently become the most successful instrumentation used in modern fundamental experiments searching for cold dark matter, and are also considered for neutrino coherent scattering and magnetic momentum neutrino measurement. This book is the first monograph exclusively dedicated to emission detectors. Properties of two-phase working media based on noble gases, saturated hydrocarbon, ion crystals and semiconductors are reviewed.


Noble Gas Detectors

Noble Gas Detectors

Author: Elena Aprile

Publisher: John Wiley & Sons

Published: 2007-02-27

Total Pages: 362

ISBN-13: 3527609636

DOWNLOAD EBOOK

This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc. The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation for national nuclear security and for monitoring nuclear materials.


Particle Physics Reference Library

Particle Physics Reference Library

Author: Christian W. Fabjan

Publisher: Springer Nature

Published: 2020

Total Pages: 1083

ISBN-13: 3030353184

DOWNLOAD EBOOK

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access


Two-Phase Emission Detectors

Two-Phase Emission Detectors

Author: Dmitry Yu Akimov

Publisher: World Scientific Publishing Company

Published: 2021-04

Total Pages: 250

ISBN-13: 9789811231087

DOWNLOAD EBOOK

One of the rapidly developing areas of modern experimental nuclear physics is non-accelerator experiments using low-background detectors. Such experiments, as a rule, are aimed at solving problems that are of fundamental importance for understanding the structure of the Universe, checking the Standard Model of elementary particles, and looking for new physics behind the observable world. The most interesting tasks include the search for dark matter in the form of new weakly interacting particles, the search for neutrinoless double beta decay, the determination of the magnetic moment of the neutrino, the study of neutrino oscillation and new types of interaction of elementary particles, such as coherent neutrino scattering off heavy nuclei. All these processes, occurring with extremely low cross sections, require the development of efficient large-mass detectors capable of detecting small energy releases down to individual ionization electrons. An effective method to do this is the emission method of detecting ionizing particles in two-phase media, which has been proposed at Moscow Engineering Physics Institute (MEPhI) 50 years ago. The origin of this technique can be traced to the research headed by Prof. Boris A Dolgoshein, whose study focus on the properties of condensed noble gases as a means to develop a tracking streamer chamber with a high-density working medium. This monograph, devoted exclusively to two-phase emission detectors, considers the technology's basic features while taking into account new developments introduced into experimental practice in the last ten years since the publication of its predecessor, Emission Detectors (Bolozdynya, 2010).


Handbook of Particle Detection and Imaging

Handbook of Particle Detection and Imaging

Author: Claus Grupen

Publisher: Springer Science & Business Media

Published: 2012-01-08

Total Pages: 1251

ISBN-13: 3642132715

DOWNLOAD EBOOK

The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.


Position-Sensitive Gaseous Photomultipliers: Research and Applications

Position-Sensitive Gaseous Photomultipliers: Research and Applications

Author: Francke, Tom

Publisher: IGI Global

Published: 2016-05-23

Total Pages: 587

ISBN-13: 1522502432

DOWNLOAD EBOOK

Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.


Particle Detectors

Particle Detectors

Author: Hermann Kolanoski

Publisher: Oxford University Press

Published: 2020-06-30

Total Pages: 949

ISBN-13: 0191899232

DOWNLOAD EBOOK

This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.


Semiconductor Detector Systems

Semiconductor Detector Systems

Author: Helmuth Spieler

Publisher: OUP Oxford

Published: 2005-08-25

Total Pages: 513

ISBN-13: 0191523658

DOWNLOAD EBOOK

Semiconductor sensors patterned at the micron scale combined with custom-designed integrated circuits have revolutionized semiconductor radiation detector systems. Designs covering many square meters with millions of signal channels are now commonplace in high-energy physics and the technology is finding its way into many other fields, ranging from astrophysics to experiments at synchrotron light sources and medical imaging. This book is the first to present a comprehensive discussion of the many facets of highly integrated semiconductor detector systems, covering sensors, signal processing, transistors and circuits, low-noise electronics, and radiation effects. The diversity of design approaches is illustrated in a chapter describing systems in high-energy physics, astronomy, and astrophysics. Finally a chapter "Why things don't work" discusses common pitfalls. Profusely illustrated, this book provides a unique reference in a key area of modern science.