Open Channel Flow, 2nd edition is written for senior-level undergraduate and graduate courses on steady and unsteady open-channel flow. The book is comprised of two parts: Part I covers steady flow and Part II describes unsteady flow. The second edition features considerable emphasis on the presentation of modern methods for computer analyses; full coverage of unsteady flow; inclusion of typical computer programs; new problem sets and a complete solution manual for instructors.
Comprehensive text on the fundamentals of modeling flow and sediment transport in rivers treating both physical principles and numerical methods for various degrees of complexity. Includes 1-D, 2-D (both depth- and width-averaged) and 3-D models, as well as the integration and coupling of these models. Contains a broad selection
The purpose of this book is to put together recent developments on sediment transport and morphological processes. There are twelve chapters in this book contributed by different authors who are currently involved in relevant research. First three chapters provide information on basic and advanced flow mechanisms including turbulence and movement of particles in water. Examples of computational procedures for sediment transport and morphological changes are given in the next five chapters. These include empirical predictions and numerical computations. Chapters nine and ten present some insights on environmental concerns with sediment transport. Last two contributions deal with two large-scale case studies related to changes in the transport and provenance of glacial marine sediments, and processes involving land slides.
This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modeling and computer simulation. Although it represents only a small sample of the research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. It will be useful to encourage further experimental and theoretical researches in the above mentioned areas of numerical simulation.
Overland flow modelling has been an active field of research for some years, but developments in numerical methods and computational resources have recently accelerated progress, producing models for different geometries and types of flows, such as simulations of canal and river networks. Flow in canals has traditionally been described using one-dimensional, depth-averaged, shallow water models; but a variety of simulation techniques now facilitate the management of hydrodynamic systems, providing models which incorporate complex geometry and diverse flows. Much effort has gone into elaborating canal operational rules based on decision support systems, with the dual aim of assuring water delivery and meeting flow control constraints. In natural water courses, water management problems are associated with the need to meet quality standards. Numerical modelling of advection-diffusion can be used to manage problems related to the movement of solutes in rivers and aquifers. The analysis of solute transport is used to safeguard the quality of surface and ground water and to help prevent eutrophication. Solute flow through the soil can be dynamically linked to overland flow for hydrological and agricultural applications. Advances in modelling also cast new light on sediment transport in rivers, exploring the complex dynamics of river bed erosion and deposition and assist in thee analysis of river-reservoir systems. All these issues are discussed in Numerical Modelling of Hydrodynamics for Water Resources, which will be useful to civil engineers, applied mathematicians, hydrologists, and physicists.
With contributions from key researchers across the globe, and edited by internationally recognized leading academics, Gravel-bed Rivers: Processes and Disasters presents the definitive review of current knowledge of gravel-bed rivers. Continuing an established and successful series of scholarly reports, this book consists of the papers presented at the 8th International Gravel-bed Rivers Workshop. Focusing on all the recent progress that has been made in the field, subjects covered include flow, physical modeling, sediment transport theory, techniques and instrumentation, morphodynamics and ecological topics, with special attention given to aspects of disasters relevant to sediment supply and integrated river management. This up-to-date compendium is essential reading for geomorphologists, river engineers and ecologists, river managers, fluvial sedimentologists and advanced students in these fields.