Basic One- and Two-dimensional NMR Spectroscopy
Author: Horst Friebolin
Publisher:
Published: 1993
Total Pages: 402
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Horst Friebolin
Publisher:
Published: 1993
Total Pages: 402
ISBN-13:
DOWNLOAD EBOOKAuthor: Atta-ur- Rahman
Publisher: Elsevier
Published: 2013-10-22
Total Pages: 599
ISBN-13: 1483290719
DOWNLOAD EBOOKThe field of nuclear magnetic resonance spectroscopy has undergone explosive development during the last decade with the advent of new one- and two-dimensional techniques. The author has had extensive experience in the use of these techniques for the structure elucidation of complex natural products, and in this book he gives a comprehensive, up-to-date and very readable account of these developments. The book's scope is very wide. It starts from fundamental principles of modern NMR spectroscopy, describing the instrumentation and its optimum use, and extends to the latest developments such as inverse measurements. Emphasis is on problem-solving so as to be useful to a large number of organic chemists, biochemists and medicinal chemists. The problems and worked solutions at the end of the chapters will help students to gain proficiency in the application of these new techniques. Those who are learning how to operate modern NMR spectrometers will find particularly useful the description of such basic aspects as shimming, probe tuning, and methods for improvement of resolution and sensitivity.
Author: Kōji Nakanishi
Publisher: University Science Books
Published: 1990
Total Pages: 252
ISBN-13: 9784062036658
DOWNLOAD EBOOKAuthor: William R. Croasmun
Publisher: VCH Publishers
Published: 1994
Total Pages: 994
ISBN-13:
DOWNLOAD EBOOKAuthor: Jeffrey H. Simpson
Publisher: Academic Press
Published: 2011-12-30
Total Pages: 591
ISBN-13: 0123849705
DOWNLOAD EBOOK"The second edition of this book comes with a number of new figures, passages, and problems. Increasing the number of figures from 290 to 448 has necessarily added considerable length, weight, and, expense. It is my hope that the book has not lost any of its readability and accessibility. I firmly believe that most of the concepts needed to learn organic structure determination using nuclear magnetic resonance spectroscopy do not require an extensive mathematical background. It is my hope that the manner in which the material contained in this book is presented both reflects and validates this belief"--
Author: L. D. Field
Publisher: John Wiley & Sons
Published: 2015-06-15
Total Pages: 328
ISBN-13: 1118868943
DOWNLOAD EBOOKThe derivation of structural information from spectroscopic data is now an integral part of organic chemistry courses at all Universities. Over recent years, a number of powerful two-dimensional NMR techniques (e.g. HSQC, HMBC, TOCSY, COSY and NOESY) have been developed and these have vastly expanded the amount of structural information that can be obtained by NMR spectroscopy. Improvements in NMR instrumentation now mean that 2D NMR spectra are routinely (and sometimes automatically) acquired during the identification and characterisation of organic compounds. Organic Structures from 2D NMR Spectra is a carefully chosen set of more than 60 structural problems employing 2D-NMR spectroscopy. The problems are graded to develop and consolidate a student’s understanding of 2D NMR spectroscopy. There are many easy problems at the beginning of the collection, to build confidence and demonstrate the basic principles from which structural information can be extracted using 2D NMR. The accompanying text is very descriptive and focussed on explaining the underlying theory at the most appropriate level to sufficiently tackle the problems. Organic Structures from 2D NMR Spectra Is a graded series of about 60 problems in 2D NMR spectroscopy that assumes a basic knowledge of organic chemistry and a basic knowledge of one-dimensional NMR spectroscopy Incorporates the basic theory behind 2D NMR and those common 2D NMR experiments that have proved most useful in solving structural problems in organic chemistry Focuses on the most common 2D NMR techniques – including COSY, NOESY, HMBC, TOCSY, CH-Correlation and multiplicity-edited C-H Correlation. Incorporates several examples containing the heteronuclei 31P, 15N and 19F Organic Structures from 2D NMR Spectra is a logical follow-on from the highly successful “Organic Structures from Spectra” which is now in its fifth edition. The book will be invaluable for students of Chemistry, Pharmacy, Biochemistry and those taking courses in Organic Chemistry. Also available: Instructors Guide and Solutions Manual to Organic Structures from 2D NMR Spectra
Author: Joseph B. Lambert
Publisher: John Wiley & Sons
Published: 2019-01-04
Total Pages: 485
ISBN-13: 1119295238
DOWNLOAD EBOOKCombines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Author: T. Claridge
Publisher: Elsevier
Published: 1999-12-24
Total Pages: 408
ISBN-13: 9780080427997
DOWNLOAD EBOOKFrom the initial observation of proton magnetic resonance in water and in paraffin, the discipline of nuclear magnetic resonance has seen unparalleled growth as an analytical method. Modern NMR spectroscopy is a highly developed, yet still evolving, subject which finds application in chemistry, biology, medicine, materials science and geology. In this book, emphasis is on the more recently developed methods of solution-state NMR applicable to chemical research, which are chosen for their wide applicability and robustness. These have, in many cases, already become established techniques in NMR laboratories, in both academic and industrial establishments. A considerable amount of information and guidance is given on the implementation and execution of the techniques described in this book.
Author: Neil E. Jacobsen
Publisher: John Wiley & Sons
Published: 2016-10-21
Total Pages: 652
ISBN-13: 1119047145
DOWNLOAD EBOOKThrough numerous examples, the principles of the relationship between chemical structure and the NMR spectrum are developed in a logical, step-by-step fashion Includes examples and exercises based on real NMR data including full 600 MHz one- and two-dimensional datasets of sugars, peptides, steroids and natural products Includes detailed solutions and explanations in the text for the numerous examples and problems and also provides large, very detailed and annotated sets of NMR data for use in understanding the material Describes both simple aspects of solution-state NMR of small molecules as well as more complex topics not usually covered in NMR books such as complex splitting patterns, weak long-range couplings, spreadsheet analysis of strong coupling patterns and resonance structure analysis for prediction of chemical shifts Advanced topics include all of the common two-dimensional experiments (COSY, ROESY, NOESY, TOCSY, HSQC, HMBC) covered strictly from the point of view of data interpretation, along with tips for parameter settings
Author: James Keeler
Publisher: John Wiley & Sons
Published: 2011-09-19
Total Pages: 533
ISBN-13: 1119964938
DOWNLOAD EBOOKThis text is aimed at people who have some familiarity with high-resolution NMR and who wish to deepen their understanding of how NMR experiments actually ‘work’. This revised and updated edition takes the same approach as the highly-acclaimed first edition. The text concentrates on the description of commonly-used experiments and explains in detail the theory behind how such experiments work. The quantum mechanical tools needed to analyse pulse sequences are introduced set by step, but the approach is relatively informal with the emphasis on obtaining a good understanding of how the experiments actually work. The use of two-colour printing and a new larger format improves the readability of the text. In addition, a number of new topics have been introduced: How product operators can be extended to describe experiments in AX2 and AX3 spin systems, thus making it possible to discuss the important APT, INEPT and DEPT experiments often used in carbon-13 NMR. Spin system analysis i.e. how shifts and couplings can be extracted from strongly-coupled (second-order) spectra. How the presence of chemically equivalent spins leads to spectral features which are somewhat unusual and possibly misleading, even at high magnetic fields. A discussion of chemical exchange effects has been introduced in order to help with the explanation of transverse relaxation. The double-quantum spectroscopy of a three-spin system is now considered in more detail. Reviews of the First Edition “For anyone wishing to know what really goes on in their NMR experiments, I would highly recommend this book” – Chemistry World “...I warmly recommend for budding NMR spectroscopists, or others who wish to deepen their understanding of elementary NMR theory or theoretical tools” – Magnetic Resonance in Chemistry