Since the first TRP ion channel was discovered in Drosophila melanogaster in 1989, the progress made in this area of signaling research has yielded findings that offer the potential to dramatically impact human health and wellness. Involved in gateway activity for all five of our senses, TRP channels have been shown to respond to a wide range of st
Despite tremendous advances in the understanding of the sensory nervous system which have accompanied the recent explosive growth of the neurosciences, rema- ably few innovative medicines directed towards pain and inflammation are ava- able. Indeed, many patients are still prescribed analgesic and anti-inflammatory medications that were identified long ago as components of herbal remedies. Si- larly, potential new medicines in clinical evaluation based on capsaicin and the c- saicin receptor are both grounded firmly on folk traditions and yet rely upon the most contemporary techniques of drug discovery and delivery. The first formal report of the pain-relieving properties of capsaicin appeared in 1850 [1]. However, for centuries before this, capsaicin-containing extracts had been used as folk medicines in cultures with access to pepper plants, much in the same way as poppy or willow-bark extracts were. Despite widespread use, it was not until 1878 that the selective action of capsaicin on the sensory nervous system was r- ognized [2]. In Chapter 1 of this volume, Janos Szolcsányi reviews this early research, which culminated with the seminal studies of Nicholas Jansco and his c- leagues in Hungary in the 1940s. Since then, capsaicin and related vanilloid c- pounds have played a prominent role in analgesia and inflammation investigations because of their ability to selectively activate a subpopulation of sensory neurons and produce sensations of pain and localized erythema.
TRP Channels as Therapeutic Targets: From Basic Science to Clinical Use is authored by experts across academia and industry, providing readers with a complete picture of the therapeutic potential and challenges associated with using TRP channels as drug targets. This book offers a unique clinical approach by covering compounds that target TRP channels in pre-clinical and clinical phases, also offering a discussion of TRP channels as biomarkers. An entire section is devoted to the novel and innovative uses of these channels across a variety of diseases, offering strategies that can be used to overcome the adverse effects of first generation TRPV1 antagonists. Intended for all researchers and clinicians working toward the development of successful drugs targeting TRP channels, this book is an essential resource chocked full of the latest clinical data and findings. - Contains comprehensive coverage of TRP channels as therapeutic targets, from emerging clinical indications to completed clinical trials - Discusses TRP channels as validated targets, ranging from obesity and diabetes through cancer and respiratory disorders, kidney diseases, hypertension, neurodegenerative disorders, and more - Provides critical analysis of the complications and side effects that have surfaced during clinical trials, offering evidence-based suggestions for overcoming them
There have been tremendous recent advances in the pharmacotherapy, dose regimens, and combinations used to treat cancer and for the treatment or prevention of the spread of disease. As a direct result of these advances, there are an increasing number of cancer survivors, although research dealing with chemotherapy-induced pain is still in its early
This volume provides up-to-date information on the molecular and functional properties and pharmacology of mammalian TRP channels. Leading experts in the field have written 35 essays which describe properties of a single TRP protein/channel or portray more general principles of TRP function and important pathological situations linked to mutations of TRP genes or their altered expression.
Advances in itch research have elucidated differences between itch and pain but have also blurred the distinction between them. There is a long debate about how somatic sensations including touch, pain, itch, and temperature sensitivity are encoded by the nervous system. Research suggests that each sensory modality is processed along a fixed, direct-line communication system from the skin to the brain. Itch: Mechanisms and Treatment presents a timely update on all aspects of itch research and the clinical treatment of itch that accompanies many dermatological conditions including psoriasis, neuropathic itch, cutaneous t-cells lymphomas, and systemic diseases such as kidney and liver disease and cancer. Composed of contributions from distinguished researchers around the world, the book explores topics such as: Neuropathic itch Peripheral neuronal mechanism of itch The role of PAR-2 in neuroimmune communication and itch Mrgprs as itch receptors The role of interleukin-31 and oncostatin M in itch and neuroimmune communication Spinal coding of itch and pain Spinal microcircuits and the regulation of itch Examining new findings on cellular and molecular mechanisms, the book is a compendium of the most current research on itch, its prevalence in society, and the problems associated with treatment.
The Essence of Analgesia and Analgesics is an invaluable practical resource for clinicians giving pain relief in any clinical setting, describing the pharmacologic principles and clinical use of all available pain medications. As well as detailed overviews of pain processing and analgesic theory, sections are dedicated to oral and panteral opioid analgesics, neuraxial opioids, NSAIDs, local anesthetics, anticonvulsant type analgesics, NMDA antagonists, alpha adrenergic analgesics, antidepressant analgesics, muscle relaxants, adjuvant medications, and new and emerging analgesics. The concise format of the chapters allows for quick and easy reading and assimilation of information. Enhanced by summary tables and figures, each chapter provides an overview of a particular drug, covering chemical structure, mode of activity, indications, contraindications, common doses and uses, advantages and disadvantages, and drug related adverse events. Key references are also provided. Edited by leading experts in pain management, this is essential reading for any clinician involved in pain management.
Sickle Cell Pain is a panoramic, in-depth exploration of every scientific, human, and social dimension of this cruel disease. This comprehensive, definitive work is unique in that it is the only book devoted to sickle cell pain, as opposed to general aspects of the disease. The 752-page book links sickle cell pain to basic, clinical, and translational research, addressing various aspects of sickle pain from molecular biology to the psychosocial aspects of the disease. Supplemented with patient narratives, case studies, and visual art, Sickle Cell Pain’s scientific rigor extends through its discussion of analgesic pharmacology, including abuse-deterrent formulations. The book also addresses in great detail inequities in access to care, stereotyping and stigmatization of patients, the implications of rapidly evolving models of care, and recent legislation and litigation and their consequences.
A repertoire of 10 TLRs mediate the first response to all microbes that infect mammals. They are the long sought receptors for a wide range of microbial products. Notable examples include TLR4 which recognizes LPS from gram negative bacteria, TLR3 which recognizes viral double-stranded RNA and TLR9 which recognizes CpG DNA motifs, found commonly in both viruses and bacteria. TLRs are increasingly being implicated in both infectious and inflammatory diseases, notable examples being sepsis, inflammatory bowel disease, atherosclerosis and asthma. There is therefore great interest in targeting TLRs therapeutically since blocking TLRs will result in a decrease in the production of inflammatory mediators such as TNF. This volume covers our current understanding of TLRs, and their role in inflammation. Given the primacy of TLRs in the inflammatory process and their emerging role in inflammatory diseases the book is of great interest to researchers working in inflammation and immunology.
One of the Most Rapidly Advancing Fields in Modern Neuroscience The success of molecular biology and the new tools derived from molecular genetics have revolutionized pain research and its translation to therapeutic effectiveness. Bringing together recent advances in modern neuroscience regarding genetic studies in mice and humans and the practical