In Turbulent Streams: An Environmental History of Japan’s Rivers, 1600–1930, Roderick I. Wilson shows how rivers have played an important role in Japanese history and moves beyond conventional stories of technological progress and environmental decline to provide a dynamic history of environmental relations.
The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.
Understanding the mechanism and behaviour of rivers flowing in alluvium is a most challenging subject. The conditions presented by a natural river are far from simple: the flow varies with location and time, and the granular structure and cohesive properties of the alluvium are rarely homogeneous. River Mechanics addresses this subject and aims to improve the understanding and formulation of the fluvial processes which occur in rivers. Topics covered include the interpretation of turbulence in the light of recent advances in the field, and current thinking on the regime concept.
This title provides the fundamental bases for developing turbulence models on rational grounds. The main different methods of approach are considered, ranging from statistical modelling at various degrees of complexity to numerical simulations of turbulence. Each of these various methods has its own specific performances and limitations, which appear to be complementary rather than competitive. After a discussion of the basic concepts, mathematical tools and methods for closure, the book considers second order closure models. Emphasis is placed upon this approach because it embodies potentials for clarifying numerous problems in turbulent shear flows. Simpler, generally older models are then presented as simplified versions of the more general second order models. The influence of extra physical parameters is also considered. Finally, the book concludes by examining large Eddy numerical simulations methods. Given the book’s comprehensive coverage, those involved in the theoretical or practical study of turbulence problems in fluids will find this a useful and informative read.
The aim of this book is to provide an accessible, up-to-date introduction to stream and river biology. Beginning with the physical features that define running water habitats, the book goes on to look at these organisms and their ecology.
Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.
Coverage includes: Experimental findings around coherent vortical structures (CVS) in turbulent boundary layers and methods of controlling them Static and dynamic mechanical characteristics of elastic composite coatings, as well as new techniques and devices developed for their measurement Combined methods of flow control and drag reduction, including the effect of injection of polymer solutions, elastic coatings and generated longitudinal vortical structures on hydrodynamic resistance Intended as a reference for senior engineers and researchers concerned with the drag reduction and the dynamics of turbulent boundary layer flows, Boundary Layer Flow over Elastic Surfaces provides a unique source of information on compliant surface drag reduction and the experimental techniques around it that have shown measurable and repeatable improvements over recent years.