Turbulent Flow Structure Near Walls

Turbulent Flow Structure Near Walls

Author: J. D. A. Walker

Publisher:

Published: 1991

Total Pages: 184

ISBN-13:

DOWNLOAD EBOOK

In the past decade, progress has been made in determining the nature of turbulent flow near walls. Many of these advances, which have occurred through new experimental methodologies, direct numerical simulations, and new theoretical developments, are described in this volume.


Near-wall Turbulent Flows

Near-wall Turbulent Flows

Author: Ronald M. C. So

Publisher: Elsevier Publishing Company

Published: 1993

Total Pages: 1072

ISBN-13:

DOWNLOAD EBOOK

Knowledge of near-wall turbulence from experimental, theoretical and numerical sources is accumulating at an ever increasing rate. An overview of the latest important developments is reported and discussed in depth in this volume with the goal of stimulating closer dialogue between researchers in all areas of near-wall turbulence. The full text of 95 contributed papers cover a broad range of topics in near-wall turbulent flows that includes boundary layers, coherent structures, drag reduction, experimental methods, high speed flows, numerical simulations, transition and turbulent modeling. The innovativeness of the contributions demonstrates that near-wall turbulence remains a vital and dynamically evolving field with important technological consequences for the future.


Basics of Engineering Turbulence

Basics of Engineering Turbulence

Author: David Ting

Publisher: Academic Press

Published: 2016-02-23

Total Pages: 258

ISBN-13: 0128039833

DOWNLOAD EBOOK

Basics of Engineering Turbulence introduces flow turbulence to engineers and engineering students who have a fluid dynamics background, but do not have advanced knowledge on the subject. It covers the basic characteristics of flow turbulence in terms of its many scales. The author uses a pedagogical approach to help readers better understand the fundamentals of turbulence scales, especially how they are derived through the order of magnitude analysis. This book is intended for those who have an interest in flowing fluids. It provides some background, though of limited scope, on everyday flow turbulence, especially in engineering applications. The book begins with the 'basics' of turbulence which is necessary for any reader being introduced to the subject, followed by several examples of turbulence in engineering applications. This overall approach gives readers all they need to grasp both the fundamentals of turbulence and its applications in practical instances. - Focuses on the basics of turbulence for applications in engineering and industrial settings - Provides an understanding of concepts that are often challenging, such as energy distribution among the turbulent structures, the effective diffusivity, and the theory behind turbulence scales - Offers a user-friendly approach with clear-and-concise explanations and illustrations, as well as end-of-chapter problems


The Structure of Turbulent Shear Flow

The Structure of Turbulent Shear Flow

Author: A. A. R. Townsend

Publisher: Cambridge University Press

Published: 1976

Total Pages: 450

ISBN-13: 9780521298193

DOWNLOAD EBOOK

Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.


Turbulent Flows

Turbulent Flows

Author: G. Biswas

Publisher: CRC Press

Published: 2002

Total Pages: 478

ISBN-13: 9780849310140

DOWNLOAD EBOOK

This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.


Engineering Turbulence Modelling and Experiments 5

Engineering Turbulence Modelling and Experiments 5

Author: W. Rodi

Publisher: Elsevier

Published: 2002-08-21

Total Pages: 1029

ISBN-13: 008053094X

DOWNLOAD EBOOK

Turbulence is one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends increasingly on the performance of the turbulence models. This series of symposia provides a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. The papers in this set of proceedings were presented at the 5th International Symposium on Engineering Turbulence Modelling and Measurements in September 2002. They look at a variety of areas, including: Turbulence modelling; Direct and large-eddy simulations; Applications of turbulence models; Experimental studies; Transition; Turbulence control; Aerodynamic flow; Aero-acoustics; Turbomachinery flows; Heat transfer; Combustion systems; Two-phase flows. These papers are preceded by a section containing 6 invited papers covering various aspects of turbulence modelling and simulation as well as their practical application, combustion modelling and particle-image velocimetry.


An Experimental Investigation of the Flow Structure of the Turbulent Boundary Layer

An Experimental Investigation of the Flow Structure of the Turbulent Boundary Layer

Author: Peter W. Runstadler

Publisher:

Published: 1963

Total Pages: 326

ISBN-13:

DOWNLOAD EBOOK

A combination of visual and quantitative measurements is presented, providing a physical picture of the turbulent boundary layer flow structure on a flat plate. The flow structure is shown to consist of three zones, each zone has a one to one correspondence to the well known regions of the u+, y+ mean velocity profile. A wall layer region is shown to exist below y+ = 10. An apparently fully turbulent region exists corresponding to the logarithmic ''law of the wall'' and the ''buffer'' region. An intermittent zone appears to agree closely with the ''wake'' deviation region. An entirely new result of the investigation is the delineation of the structure of the wall layer region. This region is shown to contain a relatively regular structure of low and high velocity fluid streaks alternating in the span direction, together with the ejection of low momentum fluid into the outer flow. Correlations are given for the rate of ejection and the streak spacing. A qualitative description of other features of the wall layer region and the character of the remainder of the boundary layer flow structure is presented. (Author).


Turbulent Flow

Turbulent Flow

Author: Peter S. Bernard

Publisher: John Wiley & Sons

Published: 2002-08-19

Total Pages: 516

ISBN-13: 9780471332190

DOWNLOAD EBOOK

Provides unique coverage of the prediction and experimentation necessary for making predictions. * Covers computational fluid dynamics and its relationship to direct numerical simulation used throughout the industry. * Covers vortex methods developed to calculate and evaluate turbulent flows. * Includes chapters on the state-of-the-art applications of research such as control of turbulence.


Self-sustaining Mechanisms of Wall Turbulence

Self-sustaining Mechanisms of Wall Turbulence

Author: Ronald Lee Panton

Publisher: Computational Mechanics

Published: 1997

Total Pages: 448

ISBN-13:

DOWNLOAD EBOOK

Why is wall turbulence self-sustaining? In this book well-regarded researchers not only discuss what they know and believe, but also speculate on ideas that still require numerical or experimental testing and verification. An initial brief history of boundary layer structure research is followed by chapters on experimental information and specific topics within the subject. There are then sections on computational aspects.