There are two recurring themes in astrophysical and geophysical fluid mechanics: waves and turbulence. This book investigates how turbulence responds to rotation, stratification or magnetic fields, identifying common themes, where they exist, as well as the essential differences which inevitably arise between different classes of flow. The discussion is developed from first principles, making the book suitable for graduate students as well as professional researchers. The author focuses first on the fundamentals and then progresses to such topics as the atmospheric boundary layer, turbulence in the upper atmosphere, turbulence in the core of the earth, zonal winds in the giant planets, turbulence within the interior of the sun, the solar wind, and turbulent flows in accretion discs. The book will appeal to engineers, geophysicists, astrophysicists and applied mathematicians who are interested in naturally occurring turbulent flows.
The prediction of turbulent flows is of paramount importance in the development of complex engineering systems involving flow, heat and mass transfer, and chemical reactions. Arising from a programme held at the Isaac Newton Institute in Cambridge, this volume reviews the current situation regarding the prediction of such flows through the use of modern computational fluid dynamics techniques, and attempts to address the inherent problem of modelling turbulence. In particular, the current physical understanding of such flows is summarised and the resulting implications for simulation discussed. The volume continues by surveying current approximation methods whilst discussing their applicability to industrial problems. This major work concludes by providing a specific set of guidelines for selecting the most appropriate model for a given problem. Unique in its breadth and critical approach, this book will be of immense value to experienced practitioners and researchers, continuing the UK's strong tradition in fluid dynamics.
The Seventh Symposium was held on the campus of Stanford University with·a combination offacilities and weather which made it possible to add open-air poster sessions and coffee breaks to the programme. This was particularly convenient as the call for papers attracted close to three hundred abstracts and a total number of participants well in excess of this number. Some one hundred and thirty papers were presented in carefully phased parallel sessions and thirty six further contributions were made available in the form of posters. In addition, a lively open-forum session allowed additional speakers to make brief presentations. The staff of the Thermo-Sciences Division of the Department of Mechanical Engineering at Stanford undertook the local arrangements with evident success and their extensive record of contributions to Turbulent Shear Flows made the venue particularly appropriate. Also, the Centre for Turbulence Studies, based on the faculty of the University and the NASA Ames Research Center, provided a considerable body of expertise with emphasis on direct numerical stimulation.
The phenomena treated in this book all depend on the action of gravity on small density differences in a non-rotating fluid. The author gives a connected account of the various motions which can be driven or influenced by buoyancy forces in a stratified fluid, including internal waves, turbulent shear flows and buoyant convection. This excellent introduction to a rapidly developing field, first published in 1973, can be used as the basis of graduate courses in university departments of meteorology, oceanography and various branches of engineering. This edition is reprinted with corrections, and extra references have been added to allow readers to bring themselves up to date on specific topics. Professor Turner is a physicist with a special interest in laboratory modelling of small-scale geophysical processes. An important feature is the superb illustration of the text with many fine photographs of laboratory experiments and natural phenomena.
The first four symposia in the series on turbulent shear flows have been held alternately in the United States and Europe with the first and third being held at universities in eastern and western States, respectively. Continuing this pattern, the Fifth Symposium on Turbulent Shear Flows was held at Cornell University, Ithaca, New York, in August 1985. The meeting brought together more than 250 participants from around the world to present the results of new research on turbulent shear flows. It also provided a forum for lively discussions on the implications (practical or academic) of some of the papers. Nearly 100 formal papers and about 20 shorter communications in open forums were presented. In all the areas covered, the meeting helped to underline the vitality of current research into turbulent shear flows whether in experimental, theoretical or numerical studies. The present volume contains 25 of the original symposium presentations. All have been further reviewed and edited and several have been considerably extended since their first presentation. The editors believe that the selection provides papers of archival value that, at the same time, give a representative statement of current research in the four areas covered by this book: - Homogeneous and Simple Flows - Free Flows - Wall Flows - Reacting Flows Each of these sections begins with an introductory article by a distinguished worker in the field.
Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.
In Physical Processes in Estuaries the present day knowledge of the physics of transport phenomena in estuaries and their mathematical treatment is summarized: It is divided into following parts: - Water movements in estuaries - Estuarine fronts and river plumes - Internal waves and interface stability - Fine sediment transport, aggregation of particles, settling velocity of mud flocs - Sedimentation and erosion of fine sediments. For each topic an up-to-date review and recommendations for future research are given, followed by results of original studies. Since estuarine environments are the first to be threatened by urbanization and industrial exploitation this book is an important tool for students and researchers of environmental problems as well as for consultants and water authorities.