Examines real life problems and solutions for operators and engineers running process controls Expands on the first book with the addition of five new chapters as well as new troubleshooting examples Written for the working operator and engineer, with straightforward instruction not hinged on complex math Includes real-life examples of control problems that commonly arise and how to fix them Emphasizes single and well-established process engineering principles that will help working engineers and operators switch manual control loops to automatic control
A practical and engaging guide to running process controls in petrochemical plants and refineries Process control is an area of study dealing with controlling variables that emerge in process plants, such as chemical plants, wastewater purification plants, or refineries. Existing guides to process control are numerous, but they tend to be associated with control engineering, which is more mathematical and theoretical. There is an urgent need for a more straightforward and concrete guide for practical use in petrochemical plants and refineries. Troubleshooting Process Plant Control meets this need with a work dedicated to real-life solutions and problem solving. Rooted in real-world examples and the career experience of the author, it largely avoids complex mathematics in favor of practical, well-established process engineering principles. Now fully updated to reflect the latest best practices and developments in the field, it is indispensable for process controllers in active plants of all kinds. Readers of the third edition will also find: New chapters on alarm disabling, spectrometer use, and reducing CO2 emissions Additional novel examples throughout Guidelines for using spectrometers to directly control reflux rates and steam flow to reboilers Troubleshooting Process Plant Control is ideal for practicing engineers and other technical professionals working in process facilities, as well as advanced students taking professional training courses in these fields.
“Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery...” -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia “...give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world... The book is illustrated throughout with numerous black & white photos and diagrams and also contains case studies demonstrating how actual process plants have implemented the tools and techniques discussed in the book. An extensive list of references enables readers to explore each individual topic in greater depth...” –Stainless Steel World and Valve World, November 2012 Discover how to optimize process plant equipment, from selection to operation to troubleshooting From energy to pharmaceuticals to food, the world depends on processing plants to manufacture the products that enable people to survive and flourish. With this book as their guide, readers have the information and practical guidelines needed to select, operate, maintain, control, and troubleshoot process plant equipment so that it is efficient, cost-effective, and reliable throughout its lifetime. Following the authors' careful explanations and instructions, readers will find that they are better able to reduce downtime and unscheduled shutdowns, streamline operations, and maximize the service life of processing equipment. Process Plant Equipment: Operation, Control, and Reliability is divided into three sections: Section One: Process Equipment Operations covers such key equipment as valves, pumps, cooling towers, conveyors, and storage tanks Section Two: Process Plant Reliability sets forth a variety of tested and proven tools and methods to assess and ensure the reliability and mechanical integrity of process equipment, including failure analysis, Fitness-for-Service assessment, engineering economics for chemical processes, and process component function and performance criteria Section Three: Process Measurement, Control, and Modeling examines flow meters, process control, and process modeling and simulation Throughout the book, numerous photos and diagrams illustrate the operation and control of key process equipment. There are also case studies demonstrating how actual process plants have implemented the tools and techniques discussed in the book. At the end of each chapter, an extensive list of references enables readers to explore each individual topic in greater depth. In summary, this text offers students, process engineers, and plant managers the expertise and technical support needed to streamline and optimize the operation of process plant equipment, from its initial selection to operations to troubleshooting.
Practical Process Control (loop tuning and troubleshooting). This book differs from others on the market in several respects. First, the presentation is totally in the time domain (the word "LaPlace" is nowhere to be found). The focus of the book is actually troubleshooting, not tuning. If a controller is "tunable", the tuning procedure will be straightforward and uneventful. But if a loop is "untunable", difficulties will be experienced, usually early in the tuning effort. The nature of any difficulty provides valuable clues to what is rendering the loop "untunable". For example, if reducing the controller gain leads to increased oscillations, one should look for possible interaction with one or more other loops. Tuning difficulties are always symptoms of other problems; effective troubleshooting involves recognizing the clues, identifying the root cause of the problem, and making corrections. Furthermore, most loops are rendered "untunable" due to some aspect of the steady-state behavior of the process. Consequently, the book focuses more on the relationship of process control to steady-state process characteristics than to dynamic process characteristics. One prerequisite to effective troubleshooting is to "demystify" some of the characteristics of the PID control equations. One unique aspect of this book is that it explains in the time domain all aspects of the PID control equation (including as the difference between the parallel and series forms of the PID, the reset feedback form of the PID equation, reset windup protection, etc.) The book stresses an appropriate P&I (process and instrumentation) diagram as critical to successful tuning. If the P&I is not right, tuning difficulties are inevitable. Developing and analyzing P&I diagrams is a critical aspect of troubleshooting.
A PRACTICAL GUIDE TO TROUBLESHOOTING PROCESS EQUIPMENT MALFUNCTIONS Process Equipment Malfunctions offers proven techniques for finding and fixing process plant problems and contains details on failure identification. Diagnostic tips, examples, and illustrations help to pinpoint and correct faults in chemical process and petroleum refining equipment. Complex math has been omitted. An essential resource for plant operators and process engineers, this book is based on the author's long career in field troubleshooting process problems. COVERAGE INCLUDES: Distillation tray malfunctions Packed tower problems Distillation tower pressure and composition control Fractionator product stripping Pumparounds Reboiled and steam side strippers Inspecting tower internals Process reboilers--thermosyphon circulation Heat exchangers Condenser limitations Air coolers Cooling water systems Steam condensate collection systems Steam quality problems Level control problems Process plant corrosion and fouling Vapor-liquid separation vessels Hydrocarbon-water separation and desalters Fired heaters--draft and excess O2 Disabling safety systems Vacuum systems and steam jets Vacuum surface condensers Centrifugal pump limitations Steam turbine drivers Centrifugal compressors Reciprocating compressors
There is a large gap between what you learn in college and the practical knowhow demanded in the working environment, running and maintaining electrical equipment and control circuits. Practical Troubleshooting of Electrical Equipment and Control Circuits focuses on the hands-on knowledge and rules-of-thumb that will help engineers and employers by increasing knowledge and skills, leading to improved equipment productivity and reduced maintenance costs. Practical Troubleshooting of Electrical Equipment and Control Circuits will help engineers and technicians to identify, prevent and fix common electrical equipment and control circuits. The emphasis is on practical issues that go beyond typical electrical principles, providing a tool-kit of skills in solving electrical problems, ranging from control circuits to motors and variable speed drives. The examples in the book are designed to be applicable to any facility. - Discover the practical knowhow and rules-of-thumb they don't teach you in the classroom - Diagnose electrical problems 'right first time' - Reduce downtime
Diagnose and Troubleshoot Problems in Chemical Process Equipment with This Updated Classic! Chemical engineers and plant operators can rely on the Third Edition of A Working Guide to Process Equipment for the latest diagnostic tips, practical examples, and detailed illustrations for pinpointing trouble and correcting problems in chemical process equipment. This updated classic contains new chapters on Control Valves, Cooling Towers, Waste Heat Boilers, Catalytic Effects, Fundamental Concepts of Process Equipment, and Process Safety. Filled with worked-out calculations, the book examines everything from trays, reboilers, instruments, air coolers, and steam turbines...to fired heaters, refrigeration systems, centrifugal pumps, separators, and compressors. The authors simplify complex issues and explain the technical issues needed to solve all kinds of equipment problems. Comprehensive and clear, the Third Edition of A Working Guide to Process Equipment features: Guidance on diagnosing and troubleshooting process equipment problems Explanations of how theory applies to real-world equipment operations Many useful tips, examples, illustrations, and worked-out calculations New to this edition: Control Valves, Cooling Towers, Waste Heat Boilers, Catalytic Effects, and Process Safety Inside this Renowned Guide to Solving Process Equipment Problems • Trays • Tower Pressure • Distillation Towers • Reboilers • Instruments • Packed Towers • Steam and Condensate Systems • Bubble Point and Dew Point • Steam Strippers • Draw-Off Nozzle Hydraulics • Pumparounds and Tower Heat Flows • Condensers and Tower Pressure Control • Air Coolers • Deaerators and Steam Systems • Vacuum Systems • Steam Turbines • Surface Condensers • Shell-and-Tube Heat Exchangers • Fire Heaters • Refrigeration Systems • Centrifugal Pumps • Separators • Compressors • Safety • Corrosion • Fluid Flow • Computer Modeling and Control • Field Troubleshooting Process Problems
For the first time, process technicians have a resource designed specifically for them that will provide a comprehensive, thorough overview of modern troubleshooting methods and models. Process Technology Troubleshooting utilizes a simple to complex approach that encourages readers to master basic concepts before progressing to more advanced ones for increased comprehension. The book covers troubleshooting models that apply concepts from advanced instrumentation, the control loop, and process equipment and systems, and includes coverage of such processes as a simple pump-around and feed system, compressor system, heat transfer system, cooling tower system, boiler system, furnace system, distillation system , stirred reactor system, and separations system. Each of these systems have operational information, set points, and start-up procedures. These sections include "what-if" scenarios and detailed illustrations. Process Technology Troubleshooting is an invaluable resource and reference for any novice, training manager or experienced process technician.
Introduction to Plant Automation and Controls addresses all aspects of modern central plant control systems, including instrumentation, control theory, plant systems, VFDs, PLCs, and supervisory systems. Design concepts and operational behavior of various plants are linked to their control philosophies in a manner that helps new or experienced engineers understand the process behind controls, installation, programming, and troubleshooting of automated systems. This groundbreaking book ties modern electronic-based automation and control systems to the special needs of plants and equipment. It applies practical plant operating experience, electronic-equipment design, and plant engineering to bring a unique approach to aspects of plant controls including security, programming languages, and digital theory. The multidimensional content, supported with 500 illustrations, ties together all aspects of plant controls into a single-source reference of otherwise difficult-to-find information. The increasing complexity of plant control systems requires engineers who can relate plant operations and behaviors to their control requirements. This book is ideal for readers with limited electrical and electronic experience, particularly those looking for a multidisciplinary approach for obtaining a practical understanding of control systems related to the best operating practices of large or small plants. It is an invaluable resource for becoming an expert in this field or as a single-source reference for plant control systems. Author Raymond F. Gardner is a professor of engineering at the U.S. Merchant Marine Academy at Kings Point, New York, and has been a practicing engineer for more than 40 years.
THE FIRST BOOK OF ITS KIND ON DISTILLATION TECHNOLOGY The last half-century of research on distillation has tremendously improved our understanding and design of industrial distillation equipment and systems. High-speed computers have taken over the design, control, and operation of towers. Invention and innovation in tower internals have greatly enhanced tower capacity and efficiency. With all these advances, one would expect the failure rate in distillation towers to be on the decline. In fact, the opposite is the case: the tower failure rate is on the rise and accelerating. Distillation Troubleshooting collects invaluable hands-on experiences acquired in dealing with distillation and absorption malfunctions, making them readily accessible for those engaged in solving today's problems and avoiding tomorrow's. The first book of its kind on the distillation industry, the practical lessons it offers are a must for those seeking the elusive path to trouble-free distillation. Distillation Troubleshooting covers over 1,200 case histories of problems, diagnoses, solutions, and key lessons. Coverage includes: * Successful and unsuccessful struggles with plugging, fouling, and coking * Histories and prevention of tray, packing, and internals damage * Lessons taught by incidents and accidents during shutdowns, commissioning, and abnormal operation * Troubleshooting distillation simulations to match the real world * Making packing liquid distributors work * Plant bottlenecks from intermediate draws, chimney trays, and feed points * Histories of and key lessons from explosions and fires in distillation towers * Prevention of flaws that impair reboiler and condenser performance * Destabilization of tower control systems and how to correct it * Discoveries from shutdown inspections * Suppression of foam and accumulation incidents A unique resource for improving the foremost industrial separation process, Distillation Troubleshooting transforms decades of hands-on experiences into a handy reference for professionals and students involved in the operation, design, study, improvement, and management of large-scale distillation.