The book will discuss the molecular mechanisms of cancer diseases, stem cell proliferation and transformation into cancer cells beyond the physiological processes that occur in normal stem cell biology. Some of the key oncogenic events in cancer and their signaling pathways that regulate cell division cycle progression will be described considering prospects for using such knowledge in advanced cancer therapy. Each chapter shall provide an invaluable resource for information on the most current advances in the field, with discussion of controversial issues and areas of emerging importance
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.
Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.
The Cancer Stem Cell Niche, Volume Five in the Advances in Stem Cells and their Niches series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Acute lymphoblastic leukemia and the bone marrow microenvironment, Stem cell niches in bone and their roles in cancer metastasis, The role of vasculature in cancer stem cell niches, The lung cancer stem cell niche, The prostate cancer stem cell niche: Genetic drivers and therapeutic approaches, Impact of prostate cancer stem cell niches on prostate cancer tumorigenesis and progression, The testicular cancer stem cell niche. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Stem Cells and their Niches series Includes the latest information on the Cancer Stem Cell Niche
Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.
Hematopoiesis, or the process of blood formation, has been extensively studied at both basic and clinical levels. Human diseases such as thalassemia, immunodeficiency, and leukemia represent defects in this process. Approaches to treat these disorders have required a basic understanding of the biology of blood cells. For instance, hemapoietic stem cell replacement or bone marrow transplantation has been used to ameliorate disease. This volume focuses on hematopoiesis at a cellular and molecular level, and establishes the basis for clinical manipulation of hematopoietic cells for therapeutic benefit. In Part I, the cellular characteristics of progenitors and stem cells are explored. Emphasis is placed on purification of stem cells and both in vitro and in vivo assays. The regulation of normal and leukemis stem cells is illustrated. An excellent discussion of potential use of these cells for gene therapy concludes this section. Hemapoiesis is easily studied during embryogenesis. Part II develops the concept of the waves of hemapoiesis during development. Comparative hematology is making a major comeback as a field in the 1990's. One hope is that general principles of hematopoiesis will be established by studying many models and systems. Part III delves into critical factors that regulate hematopoiesis, including both intracellular and extracellular signals. Part IV and V describe lineage programs for myeloid and lymphoid lineages. These chapters are meant to be illustrative of the different cell fates, but are not exhaustive. Part VI examines the genetics of hematopoisis, particularly in animal models. The hematopoietic system is in constant contact with stromal cells and endothelial cells during development and in the adult. Evidence suggests that endothelial cells and blood cells may arise from a common progenitor, the hemangioblast. Part VII and VIII discuss the stromal and endothelial cells with the emphasis on their interaction with hematopoietic cells.
Over the past decade, significant efforts have been made to develop stem cell-based therapies for difficult to treat diseases. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), appear to hold great promise in regards to a regenerative cell-based therapy for the treatment of these diseases. Currently, more than 200 clinical trials are underway worldwide exploring the use of MSCs for the treatment of a wide range of disorders including bone, cartilage and tendon damage, myocardial infarction, graft-versus-host disease, Crohn’s disease, diabetes, multiple sclerosis, critical limb ischemia and many others. MSCs were first identified by Friendenstein and colleagues as an adherent stromal cell population within the bone marrow with the ability to form clonogenic colonies in vitro. In regards to the basic biology associated with MSCs, there has been tremendous progress towards understanding this cell population’s phenotype and function from a range of tissue sources. Despite enormous progress and an overall increased understanding of MSCs at the molecular and cellular level, several critical questions remain to be answered in regards to the use of these cells in therapeutic applications. Clinically, both autologous and allogenic approaches for the transplantation of MSCs are being explored. Several of the processing steps needed for the clinical application of MSCs, including isolation from various tissues, scalable in vitro expansion, cell banking, dose preparation, quality control parameters, delivery methods and numerous others are being extensively studied. Despite a significant number of ongoing clinical trials, none of the current therapeutic approaches have, at this point, become a standard of care treatment. Although exceptionally promising, the clinical translation of MSC-based therapies is still a work in progress. The extensive number of ongoing clinical trials is expected to provide a clearer path forward for the realization and implementation of MSCs in regenerative medicine. Towards this end, reviews of current clinical trial results and discussions of relevant topics association with the clinical application of MSCs are compiled in this book from some of the leading researchers in this exciting and rapidly advancing field. Although not absolutely all-inclusive, we hope the chapters within this book can promote and enable a better understanding of the translation of MSCs from bench-to-bedside and inspire researchers to further explore this promising and quickly evolving field.
Since different types of stem cells for therapeutic applications have recently been proposed, this timely volume explores various sources of stem cells for tissue and organ regeneration and discusses their advantages and limitations. Also discussed are pros and cons for using embryonic stem cells, induced pluripotent stem cells, and adult stem cells isolated from postnatal tissues. Different types of adult stem cells for therapeutic applications are also reviewed, including hematopoietic stem cells, epidermal stem cells, endothelial progenitors, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells. This book also addresses paracrine effects of stem cells in regenerative medicine that are mediated by extracellular microvesicles and soluble secretome. Finally, potential applications of stem cells in cardiology, gastroenterology, neurology, immunotherapy, and aging are presented. This is an ideal book for students and researchers working in the stem cell research field.
Translational Regenerative Medicine is a reference book that outlines the life cycle for effective implementation of discoveries in the dynamic field of regenerative medicine. By addressing science, technology, development, regulatory, manufacturing, intellectual property, investment, financial, and clinical aspects of the field, this work takes a holistic look at the translation of science and disseminates knowledge for practical use of regenerative medicine tools, therapeutics, and diagnostics. Incorporating contributions from leaders in the fields of translational science across academia, industry, and government, this book establishes a more fluid transition for rapid translation of research to enhance human health and well-being. - Provides formulaic coverage of the landscape, process development, manufacturing, challenges, evaluation, and regulatory aspects of the most promising regenerative medicine clinical applications - Covers clinical aspects of regenerative medicine related to skin, cartilage, tendons, ligaments, joints, bone, fat, muscle, vascular system, hematopoietic /immune system, peripheral nerve, central nervous system, endocrine system, ophthalmic system, auditory system, oral system, respiratory system, cardiac system, renal system, hepatic system, gastrointestinal system, genitourinary system - Identifies effective, proven tools and metrics to identify and pursue clinical and commercial regenerative medicine