Trends In Differential Geometry, Complex Analysis And Mathematical Physics - Proceedings Of 9th International Workshop On Complex Structures, Integrability And Vector Fields

Trends In Differential Geometry, Complex Analysis And Mathematical Physics - Proceedings Of 9th International Workshop On Complex Structures, Integrability And Vector Fields

Author: Stancho Dimiev

Publisher: World Scientific

Published: 2009-08-21

Total Pages: 290

ISBN-13: 9814467464

DOWNLOAD EBOOK

This book contains the contributions by the participants in the nine of a series of workshops. Throughout the series of workshops, the contributors are consistently aiming at higher achievements of studies of the current topics in complex analysis, differential geometry and mathematical physics and further in any intermediate areas, with expectation of discovery of new research directions. Concerning the present one, it is worthwhile to mention that, in addition to the new developments of the traditional trends, many attractive and pioneering works were presented and their results were contributed to the present volume. The contents of this volume therefore will provide not only significant and useful information for researchers in complex analysis, differential geometry and mathematical physics (including their related areas), but also interesting mathematics for non-specialists and a broad audience. The present volume contains new developments and trends in the studies on constructions of holomorphic Cliffordian functions; the swelling constructions of minimal surfaces with higher genus in flat tori; the spectral properties of soliton equations on symmetric spaces; new types of shallow water waves described by Camassa-Holm type equations, the properties of pseudo-hermitian boson and fermion coherent states; fractals and chaos on orthorhombic lattices, and even an ambitious proposal of a graph model for Kaehler manifolds with Kaehler magnetic fields.


Trends in Differential Geometry, Complex Analysis and Mathematical Physics

Trends in Differential Geometry, Complex Analysis and Mathematical Physics

Author: Kouei Sekigawa

Publisher: World Scientific Publishing Company Incorporated

Published: 2009

Total Pages: 273

ISBN-13: 9789814277716

DOWNLOAD EBOOK

A discrete model for Kähler magnetic fields on a complex hyperbolic space / T. Adachi -- Integrability condition on the boundary parameters of the asymmetric exclusion process and matrix product ansatz / B. Aneva -- Remarks on the double-complex Laplacian / L. Apostolova -- Generalizations of conjugate connections / O. Calin, H. Matsuzoe, J. Zhang -- Asymptotics of generalized value distribution for Herglotz functions / Y. T. Christodoulides -- Cyclic hyper-scalar systems / S. Dimiev, M. S. Marinov, Z. Zhelev -- Plane curves associated with integrable dynamical systems of the Frenet-Serret type / P. A. Djondjorov, V. M. Vassilev, I. M. Mladenov -- Relativistic strain and electromagnetic photon-like objects / S. Donev, M. Tashkova -- A construction of minimal surfaces in flat tori by swelling / N. Ejiri -- On NLS equations on BD.I symmetric spaces with constant boundary conditions / V. S. Gerdjikov, N. A. Kostov -- Orthogonal almost complex structures on S[symbol] x R[symbol] / H. Hashimoto, M. Ohashi -- Persistence of solutions for some integrable shallow water equations / D. Henry -- Some geometric properties and objects related to Bézier curves / M. J. Hristov -- Heisenberg relations in the general case / B. Z. Iliev -- Poisson structures of equations associated with groups of diffeomorphisms / R. I. Ivanov -- Hyperbolic Gauss maps and parallel surfaces in hyperbolic three-space / M. Kokubu -- On the lax pair for two and three wave interaction system / N. A. Kostov -- Mathematical outlook of fractals and chaos related to simple orthorhombic Ising-Onsager-Zhang lattices / J. Ławrynowicz, S. Marchiafava, M. Nowak-Kepczyk -- A characterization of Clifford minimal hypersurfaces of a sphere in terms of their geodesics / S. Maeda -- On the curvature properties of real time-like hypersurfaces of Kähler manifolds with Norden metric / M. Manev, M. Teofilova -- Some submanifolds of almost contact manifolds with Norden metric / G. Nakova -- A short note on the double-complex Laplace operator / P. Popivanov -- Monogenic, hypermonogenic and holomorphic Cliffordian functions - a survey / I. P. Ramadanoff -- On some classes of exact solutions of eikonal equation / Ł. T. Stepień -- Dirichlet property for tessellations of tiling-type 4 on a plane by congrent pentagons / Y. Takeo, T. Adachi -- Almost complex connections on almost complex manifolds with Norden metric / M. Teofilova -- Pseudo-boson coherent and Fock states / D. A. Trifonov -- New integrable equations of mKdV type / T. I. Valchev -- Integrable dynamical systems of the Frenet-Serret type / V. M. Vassilev, P. A. Djondjorov, I. M. Mladenov


Natural Operations in Differential Geometry

Natural Operations in Differential Geometry

Author: Ivan Kolar

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 440

ISBN-13: 3662029502

DOWNLOAD EBOOK

The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.


A Mathematical Introduction to Robotic Manipulation

A Mathematical Introduction to Robotic Manipulation

Author: Richard M. Murray

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 488

ISBN-13: 1351469789

DOWNLOAD EBOOK

A Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.


Boltzmann's Legacy

Boltzmann's Legacy

Author: Jakob Yngvason

Publisher: European Mathematical Society

Published: 2008

Total Pages: 288

ISBN-13: 9783037190579

DOWNLOAD EBOOK

Ludwig Eduard Boltzmann (1844-1906) was an Austrian physicist famous for his founding contributions in the fields of statistical mechanics and statistical thermodynamics. He was one of the most important advocates for atomic theory when that scientific model was still highly controversial. To commemorate the 100th anniversary of his death in Duino, the International Symposium ``Boltzmann's Legacy'' was held at the Erwin Schrodinger International Institute for Mathematical Physics in June 2006. This text covers a broad spectrum of topics ranging from equilibrium statistical and nonequilibrium statistical physics, ergodic theory and chaos to basic questions of biology and historical accounts of Boltzmann's work. Besides the lectures presented at the symposium the volume also contains contributions specially written for this occasion. The articles give a broad overview of Boltzmann's legacy to the sciences from the standpoint of some of today's leading scholars in the field. The book addresses students and researchers in mathematics, physics, and the history of science.


Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws

Author: LEVEQUE

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 221

ISBN-13: 3034851162

DOWNLOAD EBOOK

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.


A Mathematical Gift, III

A Mathematical Gift, III

Author: Koji Shiga

Publisher: American Mathematical Society

Published: 2005-07-18

Total Pages: 148

ISBN-13: 9780821832844

DOWNLOAD EBOOK

This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".