Treatise on Solid State Chemistry

Treatise on Solid State Chemistry

Author: N. Hannay

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 731

ISBN-13: 1468480820

DOWNLOAD EBOOK

The last quarter-century has been marked by the extremely rapid growth of the solid-state sciences. They include what is now the largest subfield of physics, and the materials engineering sciences have likewise flourished. And, playing an active role throughout this vast area of science and engineer ing have been very large numbers of chemists. Yet, even though the role of chemistry in the solid-state sciences has been a vital one and the solid-state sciences have, in turn, made enormous contributions to chemical thought, solid-state chemistry has not been recognized by the general body of chemists as a major subfield of chemistry. Solid-state chemistry is not even well defined as to content. Some, for example, would have it include only the quantum chemistry of solids and would reject thermodynamics and phase equilibria; this is nonsense. Solid-state chemistry has many facets, and one of the purposes of this Treatise is to help define the field. Perhaps the most general characteristic of solid-state chemistry, and one which helps differentiate it from solid-state physics, is its focus on the chemical composition and atomic configuration of real solids and on the relationship of composition and structure to the chemical and physical properties of the solid. Real solids are usually extremely complex and exhibit almost infinite variety in their compositional and structural features.


Ceramic Processing

Ceramic Processing

Author: Mohamed N. Rahaman

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 510

ISBN-13: 135199221X

DOWNLOAD EBOOK

Materials scientists continue to develop stronger, more versatile ceramics for advanced technological applications, such as electronic components, fuel cells, engines, sensors, catalysts, superconductors, and space shuttles. From the start of the fabrication process to the final fabricated microstructure, Ceramic Processing covers all aspects of modern processing for polycrystalline ceramics. Stemming from chapters in the author's bestselling text, Ceramic Processing and Sintering, this book gathers additional information selected from many sources and review articles in a single, well-researched resource. The author outlines the most commonly employed ceramic fabrication processes by the consolidation and sintering of powders. A systematic approach highlights the importance of each step as well as the interconnection between the various steps in the overall fabrication route. The in-depth treatment of production methods includes powder, colloidal, and sol-gel processing as well as chemical synthesis of powders, forming, sintering, and microstructure control. The book covers powder preparation and characterization, organic additives in ceramic processing, mixing and packing of particles, drying, and debinding. It also describes recent technologies such as the synthesis of nanoscale powders and solid freeform fabrication. Ceramic Processing provides a thorough foundation and reference in the production of ceramic materials for advanced undergraduates and graduate students as well as professionals in corporate training or professional courses.


New Directions in Solid State Chemistry

New Directions in Solid State Chemistry

Author: C. N. R. Rao

Publisher: Cambridge University Press

Published: 1997-02-28

Total Pages: 568

ISBN-13: 9780521499071

DOWNLOAD EBOOK

In the new edition of this widely praised textbook, all the chapters have been revised and the authors have brought the work completely up to date by the addition of new material on numerous topics. In recent years, solid state chemistry has emerged as a very important element of mainstream chemistry and materials science. Students, teachers and researchers need to understand the chemistry of solids because of the crucial role this plays in determining the properties of materials. An understanding of solid state chemistry is also essential in materials design, and many fascinating relationships between the structure and properties of solids have been discovered by chemists. This text requires only an understanding of basic physics, chemistry and crystallography, and is enhanced with the most recent examples, case studies and references. It will be of value to advanced students and researchers studying solid state chemistry and materials science as a text and reference work.


Defects in Solids

Defects in Solids

Author: N. Hannay

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 537

ISBN-13: 1468408291

DOWNLOAD EBOOK

The last quarter-century has been marked by the extremely rapid growth of the solid-state sciences. They include what is now the largest subfield of physics, and the materials engineering sciences have likewise flourished. And, playing an active role throughout this vast area of science and engineer ing have been very large numbers of chemists. Yet, even though the role of chemistry in the solid-state sciences has been a vital one and the solid-state sciences have, in turn, made enormous contributions to chemical thought, solid-state chemistry has not been recognized by the general body of chemists as a major subfield of chemistry. Solid-state chemistry is not even well defined as to content. Some, for example, would have it include only the quantum chemistry of solids and would reject thermodynamics and phase equilibria; this is nonsense. Solid-state chemistry has many facets, and one of the purposes of this Treatise is to help define the field. Perhaps the most general characteristic of solid-state chemistry, and one which helps differentiate it from solid-state physics, is its focus on the chemical composition and atomic configuration of real solids and on the relationship of composition and structure to the chemical and physical properties of the solid. Real solids are usually extremely complex and exhibit almost infinite variety in their compositional and structural features.


Thermophysical Properties of Complex Materials

Thermophysical Properties of Complex Materials

Author: Aamir Shahzad

Publisher: BoD – Books on Demand

Published: 2020-03-25

Total Pages: 134

ISBN-13: 1789848881

DOWNLOAD EBOOK

This book assists in the exchange of research and progress outcomes concerned with the latest issues in thermophysical properties (TPPs) of complex liquids research, development, and production. Topics cover the control of transport properties of metallic alloys, thermal analysis of complex plasmas and instabilities in plasma devices, thermophysical properties at nanolevel, theoretical background of viscosities of hydrocarbons at varying temperature and pressure ranges, molecular modeling, and experimental investigations based on nanofluids and ionic conduction in solid-state electrolytes for thermodynamic data. This book enables global researchers to tackle the challenges that continue to generate cost-effective TPPs and the latest understanding in the development of complex materials and the collaboration of modern thermophysical generating technologies. Moreover, it provides a platform for different regional authors to exchange scientific knowledge and generate enthusiasm for science and technology.


Ceramic Processing and Sintering

Ceramic Processing and Sintering

Author: Mohamed N. Rahaman

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 1144

ISBN-13: 1351990578

DOWNLOAD EBOOK

As the field's premiere source, this reference is extensively revised and expanded to collect hard-to-find applications, equations, derivations, and examples illustrating the latest developments in ceramic processing technology. This book is concerned primarily with the processing of polycrystalline ceramics and focuses on the widespread fabrication of ceramics by the firing of consolidated powders forms. A brief treatment of sol-gel processing is also included. Ceramic Processing and Sintering, Second Edition provides clear and intensive discussions on colloidal and sol-gel processing, sintering of ceramics, and kinetic processes in materials. From powder synthesis and consolidation to sintering and densification behavior, this latest edition emphasizes the impact of each processing procedure on ceramic properties. The second edition also contains new and extended discussions on colloid stability, polymer growth and gelation, additives in ceramic forming, diffusion and defect strucutre, normal and abnormal grain growth, microwave sintering, Rayleigh instability effects, and Ostwald ripening. Illustrating the interconnectedness between the various steps in the overall fabrication route, Ceramic Processing and Sintering, Second Edition approaches the fundamental issues of each process and show how they are applied to the practical fabrication of ceramics.


Principles and Applications of Chemical Defects

Principles and Applications of Chemical Defects

Author: Richard J.D. Tilley

Publisher: Routledge

Published: 2019-05-20

Total Pages: 326

ISBN-13: 1351422111

DOWNLOAD EBOOK

This book provides some insight into chemical defects in crystalline solids, focusing on the relationship between basic principles and device applications. It is concerned with the chemical, optical and electronic consequences of the presence of defects in crystals.


Encyclopedia of Chemical Physics and Physical Chemistry

Encyclopedia of Chemical Physics and Physical Chemistry

Author: John H. Moore

Publisher: CRC Press

Published: 2023-07-03

Total Pages: 715

ISBN-13: 1003803237

DOWNLOAD EBOOK

The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.