Transport Processes in Free Surface Microfluidics

Transport Processes in Free Surface Microfluidics

Author: Brian Douglas Piorek

Publisher:

Published: 2008

Total Pages: 266

ISBN-13: 9780549987956

DOWNLOAD EBOOK

An investigation was conducted to examine the dominant fluid transport physics at the macro, micro, and molecular scale. Three novel techniques were developed to elucidate the fluid flow fields occurring in microscale and nanoscale fluidic systems. These techniques were then used to design and investigate a novel free-surface microfluidic system capable of delivering sustained and controlled flows ranging from 0 -- 1000 mum/s. The microsystem was then used to develop a sensitive and selective chemical detector capable of identifying certain gas-phase molecules present in the nearby atmosphere. The detector performs molecular recognition of gaseous compounds in the adjacent atmosphere by surface enhanced Raman spectroscopy and the transport properties of the microfluidic system are designed to maximize vapor detection capability. Chemical detection sensitivity of gaseous compounds is better than PPT. Vapors emanated from some nearby solid compounds are also detected at room temperature, including the gas-phase molecules naturally emitted from the explosive compounds: TNT, TATP, picric acid, RDX; and from narcotic samples such as cocaine.


Microfluidics and Microscale Transport Processes

Microfluidics and Microscale Transport Processes

Author: Suman Chakraborty

Publisher: CRC Press

Published: 2012-10-04

Total Pages: 368

ISBN-13: 143989924X

DOWNLOAD EBOOK

The advancements in micro- and nano-fabrication techniques, especially in the last couple of decades, have led research communities, over the world, to invest unprecedented levels of attention on the science and technology of micro- and nano-scale devices and the concerned applications. With an intense focus on micro- and nanotechnology from a fluidic perspective, Microfluidics and Microscale Transport Processes provides a broad review of advances in this field. A comprehensive compendium of key indicators to recent developments in some very active research topics in microscale transport processes, it supplies an optimal balance between discussions of concrete applications and development of fundamental understanding. The chapters discuss a wide range of issues in the sub-domains of capillary transport, fluidic resistance, electrokinetics, substrate modification, rotational microfluidics, and the applications of the phenomena of these sub-domains in diverse situations ranging from non-biological to biological ones like DNA hybridization and cellular biomicrofluidics. The book also addresses a generic problem of particle transport in nanoscale colloidal suspensions and includes a chapter on Lattice-Boltzmann methods for phase-changing problems which represents a generic particle based approach that may be useful to address many microfluidic problems of interdisciplinary relevance.


Transport Phenomena in Micro Process Engineering

Transport Phenomena in Micro Process Engineering

Author: Norbert Kockmann

Publisher: Springer Science & Business Media

Published: 2007-11-12

Total Pages: 382

ISBN-13: 3540746188

DOWNLOAD EBOOK

In this book, the fundamentals of chemical engineering are presented with respect to applications in micro system technology, microfluidics, and transport processes within microstructures. Special features of the book include the state-of-the-art in micro process engineering, a detailed treatment of transport phenomena for engineers, and a design methodology from transport effects to economic considerations.


Transport and Mixing in Laminar Flows

Transport and Mixing in Laminar Flows

Author: Roman Grigoriev

Publisher: John Wiley & Sons

Published: 2012-01-09

Total Pages: 178

ISBN-13: 3527639756

DOWNLOAD EBOOK

This book provides readers from academia and industry with an up-to-date overview of important advances in the field, dealing with such fundamental fluid mechanics problems as nonlinear transport phenomena and optimal control of mixing at the micro- and nanoscale. The editors provide both in-depth knowledge of the topic as well as vast experience in guiding an expert team of authors. The review style articles offer a coherent view of the micromixing methods, resulting in a much-needed synopsis of the theoretical models needed to direct experimental research and establish engineering principles for future applications. Since these processes are governed by nonlinear phenomena, this book will appeal to readers from both communities: fluid mechanics and nonlinear dynamics.


Transport Processes at Fluidic Interfaces

Transport Processes at Fluidic Interfaces

Author: Dieter Bothe

Publisher: Birkhäuser

Published: 2017-07-13

Total Pages: 677

ISBN-13: 3319566024

DOWNLOAD EBOOK

There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplinary research approach combining Applied Analysis, Numerical Mathematics, Interface Physics and Chemistry, as well as relevant research areas in the Engineering Sciences. The contributions originated from the joint interdisciplinary research projects in the DFG Priority Programme SPP 1506 “Transport Processes at Fluidic Interfaces.”


Interfacial Fluid Dynamics and Transport Processes

Interfacial Fluid Dynamics and Transport Processes

Author: Ranga Narayanan

Publisher: Springer

Published: 2013-06-29

Total Pages: 379

ISBN-13: 3540450955

DOWNLOAD EBOOK

The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by demands for many applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.


Transport Phenomena in Microfluidic Systems

Transport Phenomena in Microfluidic Systems

Author: Pradipta Kumar Panigrahi

Publisher: John Wiley & Sons

Published: 2016-02-15

Total Pages: 554

ISBN-13: 1118298411

DOWNLOAD EBOOK

Fully comprehensive introduction to the rapidly emerging area of micro systems technology Transport Phenomena in Micro Systems explores the fundamentals of the new technologies related to Micro-Electro-Mechanical Systems (MEMS). It deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale, such as nl, pl, fl, small size, low energy consumption, effects of the micro domain and heat transfer in the related devices. The author describes in detail and with extensive illustration micro fabrication, channel flow, transport laws, magnetophoresis, micro scale convection and micro sensors and activators, among others. This book spans multidisciplinary fields such as material science and mechanical engineering, engineering, physics, chemistry, microtechnology and biotechnology. Brings together in one collection recent and emerging developments in this fast-growing area of micro systems Covers multidisciplinary fields such as materials science, mechanical engineering, microtechnology and biotechnology, et al Comprehensive coverage of analytical models in microfluidics and MEMS technology Introduces micro fluidics applications include the development of inkjet printheads, micro-propulsion, and micro thermal technologies Presented in a very logical format Supplies readers with problems and solutions


Introduction to Microfluidics

Introduction to Microfluidics

Author: Patrick Tabeling

Publisher: OUP Oxford

Published: 2005-11-25

Total Pages: 320

ISBN-13: 9780191524554

DOWNLOAD EBOOK

Microfluidics deals with fluids flowing in miniaturized systems. It is a young discipline, which is expected to substantially expand over the next few years, stimulated by the considerable development of applications in the pharmaceutical, biomedical and chemical engineering domains. The book is an introduction to this discipline. In the first chapter, it presents a short historical background and discusses the main perspectives of the domain, at economical and scientific levels. Then the physics of miniaturization and the fluid mechanics of microflows are discussed. In the following three chapters, dispersion, electrical and thermal phenomena in miniaturized devices are presented. A brief introduction to microfabrication techniques is given in chapter six and the book concludes by providing a few examples of microfluidic systems. The book is written in a simple, direct, pedagogical way. It emphasizes concepts and understanding, rather than technical detail. It offers a cross-disciplinary view of the field embracing biological, chemical, physical and engineering perspectives. By using the book, the reader will have concepts, methods and data to grasp situations which typically arise in microfluidic systems.


Theoretical Microfluidics

Theoretical Microfluidics

Author: Henrik Bruus

Publisher: Oxford University Press

Published: 2007-09-27

Total Pages:

ISBN-13: 0191528587

DOWNLOAD EBOOK

Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters introducing microfluidics, the governing equations for mass, momentum and energy, and some basic flow solutions, the following 14 chapters treat hydraulic resistance/compliance, diffusion/dispersion, time-dependent flow, capillarity, electro- and magneto-hydrodynamics, thermal transport, two-phase flow, complex flow patterns and acousto-fluidics, as well as the new fields of opto- and nano-fluidics. Throughout the book simple models with analytical solutions are presented to provide the student with a thorough physical understanding of order of magnitudes and various selected microfluidic phenomena and devices. The book grew out of a set of well-tested lecture notes. It is with its many pedagogical exercises designed as a textbook for an advanced undergraduate or first-year graduate course. It is also well suited for self-study.