Transport Coefficients of Fluids

Transport Coefficients of Fluids

Author: Byung Chan Eu

Publisher: Springer Science & Business Media

Published: 2006-09-08

Total Pages: 408

ISBN-13: 3540282165

DOWNLOAD EBOOK

In this monograph, the density ?uctuation theory of transport coe?cients of simple and complex liquids is described together with the kinetic theory of liquids, the generic van der Waals equation of state, and the modi?ed free volume theory. The latter two theories are integral parts of the density ?- tuation theory, which enables us to calculate the density and temperature dependence of transport coe?cients of liquids from intermolecular forces. The terms nanoscience and bioscience are the catch phrases currently in fashion in science. It seems that much of the fundamentals remaining unsolved or poorly understood in the science of condensed matter has been overshadowed by the frenzy over the more glamorous disciplines of the former, shunned by novices, and are on the verge of being forgotten. The transport coe?cients of liquids and gases and related thermophysical properties of matter appear to be one such area in the science of macroscopic properties of molecular systems and statisticalmechanicsofcondensedmatter. Evennano-andbiomaterials,h- ever, cannot be fully and appropriately understood without ?rm grounding and foundations in the macroscopic and molecular theories of transport pr- ertiesandrelatedthermophysicalpropertiesofmatterinthecondensedphase. Oneisstilldealingwithsystemsmadeupofnotafewparticlesbutamultitude of them, often too many to count, to call them few-body problems that can be understoodwithoutthehelpofstatisticalmechanicsandmacroscopicphysics. In the density ?uctuation theory of transport coe?cients, the basic approach taken is quite di?erent from the approaches taken in the conventional kinetic theories of gases and liquids.


Transport Properties of Fluids

Transport Properties of Fluids

Author: Jürgen Millat

Publisher: Cambridge University Press

Published: 1996-06-13

Total Pages: 501

ISBN-13: 0521461782

DOWNLOAD EBOOK

The most reliable methods available for evaluating the transport properties of pure gases and fluid mixtures.


An Introduction to Fluid Mechanics and Transport Phenomena

An Introduction to Fluid Mechanics and Transport Phenomena

Author: G. Hauke

Publisher: Springer Science & Business Media

Published: 2008-08-26

Total Pages: 301

ISBN-13: 1402085370

DOWNLOAD EBOOK

This book presents the foundations of fluid mechanics and transport phenomena in a concise way. It is suitable as an introduction to the subject as it contains many examples, proposed problems and a chapter for self-evaluation.


Transport Theory Of Inhomogeneous Fluids

Transport Theory Of Inhomogeneous Fluids

Author: Liudmila A Pozhar

Publisher: World Scientific

Published: 1995-01-16

Total Pages: 186

ISBN-13: 9814590851

DOWNLOAD EBOOK

Until recently, the Mori-Zwanzig projection operator method, though powerful and simple, has been considered as a half-heuristic one. This book is devoted to a rigorous generalization of this method as well as its applications to nonequilibrium statistical mechanics. The well-known idea of the description of dynamical system evolution in terms of collective dynamical variables has been developed to a functional perturbation theory, which results in the master equation of any given accuracy. Examples of statistical mechanics applications of the method include a linearized transport theory and explicit expressions for transport coefficients of both homogeneous and inhomogeneous liquids, which are in good agreement with experimental data and simulation results.


Viscosity of Dense Fluids

Viscosity of Dense Fluids

Author: K. Stephan

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 273

ISBN-13: 1475769318

DOWNLOAD EBOOK

The physical properties of fluids are perhaps among the most extensively investigated physical constants of any single group of materials. This is particularly true of the thermodynamic prop erties of pure substances since the condition of thermodynamic equilibrium provides the simplest considerations for experimental measurement as well as theoretical treatment. In the case of non equilibrium transport properties, the situation is significantly complicated by the necessity of measurement of gradients in the experiment and the mathematical difficulties in handling non equilibrium distribution functions in theoretical treatments. Hence, our knowledge of the trans port properties of gases and liquids is perhaps one order of magnitude lower than for equilibrium thermodynamic properties. This situation is very much apparent when examining the available nu merical data on the viscosity of fluids particularly at high pressures. In this work, the authors have performed an outstanding contribution to the engineering literature by their critical evaluation of the pressure dependence of the available data on the viscosity of selected substances. The recommended values reported in the tables and figures also incorporate the saturated liquid and gas states as well as the data of the dilute gas in an attempt to integrate the present work with the recently published work by CINDAS/Purdue University on the viscosity of fluids at low pressures [166]. A deliberate effort was made to treat as many of the substances in the CINDAS volume as possible for which adequate high pressure data exist.


Transport Properties of Organic Liquids

Transport Properties of Organic Liquids

Author: G. Latini

Publisher: WIT Press

Published: 2006

Total Pages: 209

ISBN-13: 1845640535

DOWNLOAD EBOOK

The liquid state is possibly the most difficult and intriguing state of matter to model. Organic liquids are required, mainly as working fluids, in almost all industrial activities and in most appliances (e.g. in air conditioning). Transport properties (namely dynamic viscosity and thermal conductivity) are possibly the most important properties for the design of devices and appliances. Most theoretical studies on the liquid state date back to the Fifties however huge advances in experimental studies and applied research on heat and mass transfer in liquids have been achieved during past decades. Most of the models cannot rely on theory alone and are empirical, while for most organic liquids, only a few experimental points and empirical correlations are available in literature.The aim of this book is to present both theoretical approaches and the latest experimental advances on the issue, and to merge them into a wider approach. The book is organised into five chapters. The first chapter presents our theoretical knowledge of the liquid state. The second presents the tentative models for the evaluation of the thermal conductivity of organic liquids and confronts their results with the experimental data available in literature. The third presents the tentative models for the evaluation of the dynamic viscosity of organic liquids and confronts their results with the experimental data available in literature. The fourth presents a deeper review of the choice methods for thermal conductivity and their applications to mixtures of organic liquids and the fifth chapter presents a deeper review of the choice methods for dynamic viscosity and their applications to mixtures of organic liquids.


Mass Transport in Solids and Fluids

Mass Transport in Solids and Fluids

Author: David S. Wilkinson

Publisher: Cambridge University Press

Published: 2000-11-02

Total Pages: 292

ISBN-13: 9780521624947

DOWNLOAD EBOOK

The field of matter transport is central to understanding the processing of materials and their subsequent mechanical properties. While thermodynamics determines the final state of a material system, it is the kinetics of mass transport that governs how it gets there. This book, first published in 2000, gives a solid grounding in the principles of matter transport and their application to a range of engineering problems. The author develops a unified treatment of mass transport applicable to both solids and liquids. Traditionally matter transport in fluids is considered as an extension of heat transfer and can appear to have little relationship to diffusion in solids. This unified approach clearly makes the connection between these important fields. This book is aimed at advanced undergraduate and beginning graduate students of materials science and engineering and related disciplines. It contains numerous worked examples and unsolved problems. The material can be covered in a one semester course.


Prediction of Transport and Other Physical Properties of Fluids

Prediction of Transport and Other Physical Properties of Fluids

Author: S. Bretsznajder

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 424

ISBN-13: 1483160718

DOWNLOAD EBOOK

Prediction of Transport and Other Physical Properties of Fluids reviews general methods for predicting the transport and other physical properties of fluids such as gases and liquids. Topics covered range from the theory of corresponding states and methods for estimating the surface tension of liquids to some basic concepts of the kinetic theory of gases. Methods of estimating liquid viscosity based on the principle of additivity are also described. This volume is comprised of eight chapters and opens by presenting basic information on gases and liquids as well as intermolecular forces and constitutive and additive properties of chemical compounds. The reader is then introduced to practical methods for computing the values of physico-chemical quantities necessary for designing technological processe. Subsequent chapters focus on the surface tension of liquids and its dependence on molecular properties; the phenomenon of internal friction (viscosity) in fluids; graphical interpolation and extrapolation of liquid viscosity data; and the thermal conductivity of gases and liquids. The final two chapters examine diffusion in gases and liquids, with emphasis on the methods used for estimating the coefficients of diffusion. This book will be of interest to chemists and students and research workers in chemistry.