Transport and Structural Formation in Plasmas,

Transport and Structural Formation in Plasmas,

Author: Kimitaka Itoh

Publisher: CRC Press

Published: 1999-01-01

Total Pages: 0

ISBN-13: 9780750304498

DOWNLOAD EBOOK

This monograph, the latest in the IOP Plasma Physics Series, written by three of the most senior and internationally respected Japanese fusion scientists, presents a self-consistent picture of turbulent transport, structural formation and transitions-processes that are typical of the physics of many far from equilibrium systems such as exist in magnetically confined and inhomogeneous plasmas. The Author's view is that the plasma structure, fluctuations and turbulent transport are continually regulating each other and, in addition, that the structural formation and structural transition of plasmas are typical of the physics of far from equilibrium systems. The book presents and explains why the plasma inhomogeneity is the ordering parameter governing transport and how self-sustained fluctuations can be driven through subcritical excitation even beyond linear stability. In addition, the authors derive the non-linear gradient-flux relation with the result that asymmetry arising from the fluctuations allows mixing of the various kinds of fluxes. This emphasises the ever important role that electromagnetic fields play in inducing long range interactions, couplings and bifurcations in plasmas. To illustrate, a transport simulation of a high temperature current fusion experiment like JET-the Joint European Torus-helps us to understand various structural formations such as the H-mode. With the insight that structural formation in high temperature plasmas is fundamental to an accurate description of the basic phenomena that occur in our present cosmos, the authors provide a comprehensive account of the subject to help fusion researchers, fluid dynamicists and astrophysicists alike. The book addresses a key to understanding the age old question of what has occurred in the early stage of the our universe and what is likely to occur in the final stage of our universe.


Turbulent Transport In Magnetized Plasmas (Second Edition)

Turbulent Transport In Magnetized Plasmas (Second Edition)

Author: C Wendell Horton, Jr

Publisher: #N/A

Published: 2017-07-21

Total Pages: 522

ISBN-13: 9813225904

DOWNLOAD EBOOK

For a few seconds with large machines, scientists and engineers have now created the fusion power of the stars in the laboratory and at the same time find the rich range of complex turbulent electromagnetic waves that transport the plasma confinement systems. The turbulent transport mechanisms created in the laboratory are explained in detail in the second edition of 'Turbulent Transport in Magnetized Plasmas' by Professor Horton.The principles and properties of the major plasma confinement machines are explored with basic physics to the extent currently understood. For the observational laws that are not understood — the empirical confinement laws — offering challenges to the next generation of plasma students and researchers — are explained in detail. An example, is the confinement regime — called the 'I-mode' — currently a hot topic — is explored.Numerous important problems and puzzles for the next generation of plasma scientists are explained. There is growing demand for new simulation codes utilizing the massively parallel computers with MPI and GPU methods. When the 20 billion dollar ITER machine is tested in the 2020ies, new theories and faster/smarter computer simulations running in near real-time control systems will be used to control the burning hydrogen plasmas.


Plasma and Fluid Turbulence

Plasma and Fluid Turbulence

Author: A. Yoshizawa

Publisher: CRC Press

Published: 2002-11-12

Total Pages: 459

ISBN-13: 1420033697

DOWNLOAD EBOOK

Theory and modelling with direct numerical simulation and experimental observations are indispensable in the understanding of the evolution of nature, in this case the theory and modelling of plasma and fluid turbulence. Plasma and Fluid Turbulence: Theory and Modelling explains modelling methodologies in depth with regard to turbulence phenomena a


Aspects of Anomalous Transport in Plasmas

Aspects of Anomalous Transport in Plasmas

Author: Radu Balescu

Publisher: CRC Press

Published: 2005-04-01

Total Pages: 498

ISBN-13: 9781420034684

DOWNLOAD EBOOK

Anomalous transport is a ubiquitous phenomenon in astrophysical, geophysical and laboratory plasmas; and is a key topic in controlled nuclear fusion research. Despite its fundamental importance and ongoing research interest, a full understanding of anomalous transport in plasmas is still incomplete, due to the complexity of the nonlinear phenomena involved. Aspects in Anomalous Transport in Plasmas is the first book to systematically consider anomalous plasma transport theory and provides a unification of the many theoretical models by emphasizing interrelations between seemingly different methodologies. It is not intended as a catalogue of the vast number of plasma instabilities leading to anomalous transport; instead it chooses a number of these and emphasizes the aspects specifically due to turbulence. After a brief introduction, the microscopic theory of turbulence is discussed, including quasilinear theory and various aspects of renormalization methods, which leads to an understanding of resonance broadening, mode coupling, trajectory correlation and clumps. The second half of the book is devoted to stochiastic tramsport, using methods based on the Langevin equations and on Random Walk theory. This treatment aims at going beyond the traditional limits of weak turbulence, by introducing the recently developed method of decorrelation trajectories, and its application to electrostatic turbulence, magnetic turbulence and zonal flow generation. The final chapter includes very recent work on the nonlocal transport phenomenon.


Plasma and Fluid Turbulence

Plasma and Fluid Turbulence

Author: A. Yoshizawa

Publisher: CRC Press

Published: 2002-11-12

Total Pages: 339

ISBN-13: 1000687759

DOWNLOAD EBOOK

Theory and modelling with direct numerical simulation and experimental observations are indispensable in the understanding of the evolution of nature, in this case the theory and modelling of plasma and fluid turbulence. Plasma and Fluid Turbulence: Theory and Modelling explains modelling methodologies in depth with regard to turbulence phenomena a


Plasma and Fluid Turbulence

Plasma and Fluid Turbulence

Author: A. Yoshizawa

Publisher: CRC Press

Published: 2002-11-12

Total Pages: 459

ISBN-13: 9780750308717

DOWNLOAD EBOOK

Theory and modelling with direct numerical simulation and experimental observations are indispensable in the understanding of the evolution of nature, in this case the theory and modelling of plasma and fluid turbulence. Plasma and Fluid Turbulence: Theory and Modelling explains modelling methodologies in depth with regard to turbulence phenomena and turbulent transport both in fluids and plasmas. Special attention is paid to structural formation and transitions. In this detailed book, the authors examine the underlying ideas describing turbulence, turbulent transport, and structural transitions in plasmas and fluids. By comparing and contrasting turbulence in fluids and plasmas, they demonstrate the basic physical principles common to fluids and plasmas while also highlighting particular differences. The book also discusses the application of these ideas to neutral fluids. Part I presents a general introduction to turbulence and structural formation in fluids and plasmas, and Part II explains methodologies for fluid turbulence. In Part III, the authors describe the subjects in magnetohydrodynamics, in particular, dynamo problems. The final section, Part IV, considers plasma turbulence and transport.


Fusion Plasma Physics

Fusion Plasma Physics

Author: Weston M. Stacey

Publisher: John Wiley & Sons

Published: 2012-10-15

Total Pages: 674

ISBN-13: 3527411348

DOWNLOAD EBOOK

This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral atom recycling and transport, impurity ion transport, the physics of the plasma edge (diffusive and non-diffusive transport, MARFEs, ELMs, the L-H transition, thermal-radiative instabilities, shear suppression of transport, velocity spin-up), etc. -- are comprehensively developed and related to the experimental evidence. Operational limits on the performance of future fusion reactors are developed from plasma physics and engineering constraints, and conceptual designs of future fusion power reactors are discussed.