MIMO Transceiver Design Via Majorization Theory

MIMO Transceiver Design Via Majorization Theory

Author: Daniel P. Palomar

Publisher:

Published: 2007

Total Pages: 224

ISBN-13: 9781601980311

DOWNLOAD EBOOK

Multiple-input multiple-output (MIMO) channels provide an abstract and unified representation of different physical communication systems, ranging from multi-antenna wireless channels to wireless digital subscriber line (DSL) systems. They have the key property that several data streams can be simultaneously established. MIMO Transceiver Design via Majorization Theory presents an up-to-date unified mathematical framework for the design of point-to-point MIMO transceivers with channel state information (CSI) at both sides of the link according to an arbitrary cost function as a measure of the system performance. In addition, the framework embraces the design of systems with given individual performance on the data streams. MIMO Transceiver Design via Majorization Theory is an invaluable resource for researchers and practitioners involved in the state-of-the-art design of MIMO-based communication systems.


OQAM/FBMC for Future Wireless Communications

OQAM/FBMC for Future Wireless Communications

Author: Tao Jiang

Publisher: Academic Press

Published: 2017-09-13

Total Pages: 270

ISBN-13: 0128135581

DOWNLOAD EBOOK

OQAM/FBMC for Future Wireless Communications: Principles, Technologies and Applications introduces the concepts and key technologies of OQAM/FBMC, which has been regarded as the potential physical layer technique in future wireless communication systems. It comprises 10 chapters that provide an overview of wireless communications, introduce wireless channels, single carrier and multicarrier modulations, and three types of FBMC systems, also comparing OQAM/FBMC with OFDM. Other chapters introduce the OQAM/FBMC communication system model, the FFT implementation, CP insertion, PSD analysis, prototype filter optimization, joint PAPR reduction and sidelobe suppression, overhead reduction with virtual symbols, time and frequency domain channel estimations, block-wise SFBC for MIMO OQAM/FBMC, and much more. - Provides a comprehensive guide to most major OQAM/FBMC techniques - Includes a detailed comparison between OFDM and OQAM/FBMC - Provides readers with a complete introduction to OQAM/FBMC, from the transmitter to the receiver - Gives readers an up-to-date view of future mobile communications and how QAM/FBMC supports them


Multiple Access Techniques for 5G Wireless Networks and Beyond

Multiple Access Techniques for 5G Wireless Networks and Beyond

Author: Mojtaba Vaezi

Publisher: Springer

Published: 2018-08-23

Total Pages: 692

ISBN-13: 3319920901

DOWNLOAD EBOOK

This book presents comprehensive coverage of current and emerging multiple access, random access, and waveform design techniques for 5G wireless networks and beyond. A definitive reference for researchers in these fields, the book describes recent research from academia, industry, and standardization bodies. The book is an all-encompassing treatment of these areas addressing orthogonal multiple access and waveform design, non-orthogonal multiple access (NOMA) via power, code, and other domains, and orthogonal, non-orthogonal, and grant-free random access. The book builds its foundations on state of the art research papers, measurements, and experimental results from a variety of sources.


OFDM Baseband Receiver Design for Wireless Communications

OFDM Baseband Receiver Design for Wireless Communications

Author: Tzi-Dar Chiueh

Publisher: John Wiley & Sons

Published: 2008-04-15

Total Pages: 278

ISBN-13: 0470822481

DOWNLOAD EBOOK

Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design. OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation. Closes the gap between OFDM theory and implementation Enables the reader to transfer communication receiver concepts into hardware design wireless receivers with acceptable implementation loss achieve low-power designs Contains numerous figures to illustrate techniques Features concrete design examples of MC-CDMA systems and cognitive radio applications Presents theoretical discussions that focus on concepts rather than mathematical derivation Provides a much-needed single source of material from numerous papers Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference.


Baseband Receiver Design for Wireless MIMO-OFDM Communications

Baseband Receiver Design for Wireless MIMO-OFDM Communications

Author: Tzi-Dar Chiueh

Publisher: John Wiley & Sons

Published: 2012-04-24

Total Pages: 388

ISBN-13: 1118188217

DOWNLOAD EBOOK

The Second Edition of OFDM Baseband Receiver Design for Wirless Communications, this book expands on the earlier edition with enhanced coverage of MIMO techniques, additional baseband algorithms, and more IC design examples. The authors cover the full range of OFDM technology, from theories and algorithms to architectures and circuits. The book gives a concise yet comprehensive look at digital communication fundamentals before explaining signal processing algorithms in receivers. The authors give detailed treatment of hardware issues - from architecture to IC implementation. Links OFDM and MIMO theory with hardware implementation Enables the reader to transfer communication received concepts into hardware; design wireless receivers with acceptable implemntation loss; achieve low-power designs Covers the latest standards, such as DVB-T2, WiMax, LTE and LTE-A Includes more baseband algorithms, like soft-decoding algorithms such as BCJR and SOVA Expanded treatment of channel models, detection algorithms and MIMO techniques Features concrete design examples of WiMAX systems and cognitive radio apllications Companion website with lecture slides for instructors Based on materials developed for a course in digital communication IC design, this book is ideal for graduate students and researchers in VLSI design, wireless communications, and communications signal processing. Practicing engineers working on algorithms or hardware for wireless communications devices will also find this to be a key reference.


Bit-Interleaved Coded Modulation

Bit-Interleaved Coded Modulation

Author: Albert Guillén i Fàbregas

Publisher: Now Publishers Inc

Published: 2008

Total Pages: 170

ISBN-13: 1601981902

DOWNLOAD EBOOK

Bit-Interleaved Coded Modulation is a comprehensive study of the subject, providing a comprehensive review of one of the most important coding schemes in modern communication systems.


OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting

OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting

Author: Lajos Hanzo

Publisher: John Wiley & Sons

Published: 2005-01-28

Total Pages: 1014

ISBN-13: 0470861800

DOWNLOAD EBOOK

Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.


OFDM and MC-CDMA

OFDM and MC-CDMA

Author: Lajos Hanzo

Publisher: John Wiley & Sons

Published: 2007-01-11

Total Pages: 430

ISBN-13: 0470031379

DOWNLOAD EBOOK

Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. Currently, a technical in-depth book on this subject is unavailable, which has a similar detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink By providing an all-encompassing self-contained treatment this volume will appeal to a wide readership, as it is both an easy-reading textbook and a high-level research monograph.


MIMO-OFDM Wireless Communications with MATLAB

MIMO-OFDM Wireless Communications with MATLAB

Author: Yong Soo Cho

Publisher: John Wiley & Sons

Published: 2010-08-20

Total Pages: 458

ISBN-13: 0470825626

DOWNLOAD EBOOK

MIMO-OFDM is a key technology for next-generation cellular communications (3GPP-LTE, Mobile WiMAX, IMT-Advanced) as well as wireless LAN (IEEE 802.11a, IEEE 802.11n), wireless PAN (MB-OFDM), and broadcasting (DAB, DVB, DMB). In MIMO-OFDM Wireless Communications with MATLAB®, the authors provide a comprehensive introduction to the theory and practice of wireless channel modeling, OFDM, and MIMO, using MATLAB® programs to simulate the various techniques on MIMO-OFDM systems. One of the only books in the area dedicated to explaining simulation aspects Covers implementation to help cement the key concepts Uses materials that have been classroom-tested in numerous universities Provides the analytic solutions and practical examples with downloadable MATLAB® codes Simulation examples based on actual industry and research projects Presentation slides with key equations and figures for instructor use MIMO-OFDM Wireless Communications with MATLAB® is a key text for graduate students in wireless communications. Professionals and technicians in wireless communication fields, graduate students in signal processing, as well as senior undergraduates majoring in wireless communications will find this book a practical introduction to the MIMO-OFDM techniques. Instructor materials and MATLAB® code examples available for download at www.wiley.com/go/chomimo


Software-Defined Radio for Engineers

Software-Defined Radio for Engineers

Author: Alexander M. Wyglinski

Publisher: Artech House

Published: 2018-04-30

Total Pages: 375

ISBN-13: 1630814598

DOWNLOAD EBOOK

Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field.