This volume contains the latest research on the applications of computational chemistry, computational biochemistry, and computational physics to the new field of direct modeling of transition states for catalytic reactions. It includes all types of catalysts: organometals, metals and metalloids, metal oxides and zeolites, and enzymes.
The transItIOn-state theory has been, from the point of its inception, the most influential principle in the development of our knowledge of reaction mechanisms in solution. It is natural that as the field of biochemical dynamics has achieved new levels of refinement its students have increasingly adopted the concepts and methods of transition-state theory. Indeed, every dynamical problem of biochemistry finds its most elegant and economical statement in the terms of this theory. Enzyme catalytic power, for example, derives from the interaction of enzyme and substrate structures in the transition state, so that an understanding of this power must grow from a knowledge of these structures and interactions. Similarly, transition-state interactions, and the way in which they change as protein structure is altered, constitute the pivotal feature upon which molecular evolution must turn. The complete, coupled dynamical system of the organism, incorporating the transport of matter and energy as well as local chemical processes, will eventually have to yield to a description of its component transition-state structures and their energetic response characteristics, even if the form of the description goes beyond present-day transition-state theory. Finally, the importance of biochemical effectors in medicine and agriculture carries the subject into the world of practical affairs, in the use of transition-state information for the construction of ultra potent biological agents.
Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. - Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere - Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events - Uses graphics and explicit examples to explain concepts - Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises
The demand for novel efficient and environmentally sustainable chemo, regio- and stereoselective catalyst systems for the oxidation of organic substrates is continuously growing in line with toughening economic and environmental constraints. This book addresses these issues; it consists of eleven chapters written by world-recognized experts in green and sustainable oxidation catalysis. The most urgent and challenging topics, in the judgment of the editor, such as green asymmetric epoxidations, sulfoxidatiuons, C–H oxidations; oxidation catalysis by polyoxometalates and oxidations in non-conventional solvents, etc. have been critically reviewed in this book. Both fundamental aspects, such as catalysts design, catalytic properties, nature of catalytically active sites and reaction mechanisms, and practical outlook of the oxidations have been addressed by the authors. The book appeals to a broad readership, particularly graduate students, employees of universities and research organizations, and industrial researchers, particularly those working in the areas of homogeneous oxidation catalysis, asymmetric synthesis, organocatalysis, sustainable catalytic processes and green chemistry, mechanisms of catalytic reactions, synthesis of bioactive compounds, biomimetic chemistry, etc. Konstantin Bryliakov is Leading Researcher at the Boreskov Institute of Catalysis. In 2016, he was elected Honorary Professor of the Russian Academy of Sciences.
Transition metal catalysis belongs to the most important chemical research areas because a ubiquitous number of chemical reactions are catalyzed by transition metal compounds. Many efforts are being made by industry and academia to find new and more efficient catalysts for chemical processes. Transition metals play a prominent role in catalytic research because they have been proven to show an enormous diversity in lowering the activation barrier for chemical reactions. For many years, the search for new catalysts was carried out by trial and error, which was costly and time consuming. The understanding of the mechanism of the catalytic process is often not very advanced because it is difficult to study the elementary steps of the catalysis with experimental techniques. The development of modern quantum chemical methods for calculating possible intermediates and transition states was a breakthrough in gaining an understanding of the reaction pathways of transition metal catalyzed reactions. This volume, organized into eight chapters written by leading scientists in the field, illustrates the progress made during the last decade. The reader will obtain a deep insight into the present state of quantum chemical research in transition metal catalysis.
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
Here, the world's most active and productive computational scientists from academia and industry present established, effective and powerful tools for understanding catalysts. With its broad scope -- nitrogen fixation, polymerization, C-H bond activation, oxidations, biocatalysis and much more -- this book represents an extensive knowledge base for designing efficient catalysts, allowing readers to improve the performance of their own catalysts.
Catalytic Kinetics: Chemistry and Engineering, Second Edition offers a unified view that homogeneous, heterogeneous, and enzymatic catalysis form the cornerstone of practical catalysis. The book has an integrated, cross-disciplinary approach to kinetics and transport phenomena in catalysis, but still recognizes the fundamental differences between different types of catalysis. In addition, the book focuses on a quantitative chemical understanding and links the mathematical approach to kinetics with chemistry. A diverse group of catalysts is covered, including catalysis by acids, organometallic complexes, solid inorganic materials, and enzymes, and this fully updated second edition contains a new chapter on the concepts of cascade catalysis. Finally, expanded content in this edition provides more in-depth discussion, including topics such as organocatalysis, enzymatic kinetics, nonlinear dynamics, solvent effects, nanokinetics, and kinetic isotope effects. - Fully revised and expanded, providing the latest developments in catalytic kinetics - Bridges the gaps that exist between hetero-, homo- and enzymatic-catalysis - Provides necessary tools and new concepts for researchers already working in the field of catalytic kinetics - Written by internationally-renowned experts in the field - Examples and exercises following each chapter make it suitable as an advanced course book
An integrated approach to the molecular theory of reaction mechanism in heterogeneous catalysis, largely based on the knowledge among the growing theoretical catalysis community over the past half century, and covering all major catalytic systems. The authors develop a general conceptual framework, including in-depth comparisons with enzyme catalysis, biomineralisation, organometallic and coordination chemistry. A chapter dedicated to molecular electrocatalysis addresses the molecular description of reactions at the liquid-solid interphase, while studies range from a quantum-chemical treatment of individual molecular states to dynamic Monte-Carlo simulations, including the full flexibility of the many-particle systems. Complexity in catalysis is explained in chapters on self-organization and self-assembly of catalysts, and other sections are devoted to evolutionary, combinatorial techniques as well as artificial chemistry.