Transient Capacitance Measurement of Deep Defect Levels in GaAs and Si

Transient Capacitance Measurement of Deep Defect Levels in GaAs and Si

Author: J. T. Schott

Publisher:

Published: 1976

Total Pages: 44

ISBN-13:

DOWNLOAD EBOOK

An understanding of the defects intentionally or unintentionally introduced in semiconductor crystals by crystal growth or device fabrication procedures or by operation in nuclear and space radiation environments is essential to insure proper performance of electronic and optoelectronic systems. The use of diode capacitance measurement techniques for the study of deep defect levels in semiconductors is discussed, including a recently developed technique based on transient capacitance effects. The theoretical and experimental details of this new technique, involving the use of a lock-in amplifier to process capacitance transients, are presented in appendices. This technique is applied to Schottky barrier and asymmetrical p-n junction diodes of gallium arsenide and silicon, which are primary materials of interest in a variety of device applications. Co60-gamma ray and electron irradiations on unimplanted material produce levels that are similar to some found in the complex defect spectra of ion-damaged samples.


Identification of Defects in Semiconductors

Identification of Defects in Semiconductors

Author:

Publisher: Academic Press

Published: 1998-10-27

Total Pages: 449

ISBN-13: 008086449X

DOWNLOAD EBOOK

GENERAL DESCRIPTION OF THE SERIESSince its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. GENERAL DESCRIPTION OF THE VOLUMEThis volume has contributions on Advanced Characterization Techniques with a focus on defect identification. The combination of beam techniques with electrical and optical characterization has not been discussed elsewhere.


Defect Recognition and Image Processing in Semiconductors 1997

Defect Recognition and Image Processing in Semiconductors 1997

Author: J. Doneker

Publisher: Routledge

Published: 2017-11-22

Total Pages: 552

ISBN-13: 1351456466

DOWNLOAD EBOOK

Defect Recognition and Image Processing in Semiconductors 1997 provides a valuable overview of current techniques used to assess, monitor, and characterize defects from the atomic scale to inhomogeneities in complete silicon wafers. This volume addresses advances in defect analyzing techniques and instrumentation and their application to substrates, epilayers, and devices. The book discusses the merits and limits of characterization techniques; standardization; correlations between defects and device performance, including degradation and failure analysis; and the adaptation and application of standard characterization techniques to new materials. It also examines the impressive advances made possible by the increase in the number of nanoscale scanning techniques now available. The book investigates defects in layers and devices, and examines the problems that have arisen in characterizing gallium nitride and silicon carbide.


Semiconductor Material and Device Characterization

Semiconductor Material and Device Characterization

Author: Dieter K. Schroder

Publisher: John Wiley & Sons

Published: 2015-06-29

Total Pages: 800

ISBN-13: 0471739065

DOWNLOAD EBOOK

This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.


Materials for Optoelectronic Devices, OEICs and Photonics

Materials for Optoelectronic Devices, OEICs and Photonics

Author: H. Schlötterer

Publisher: Elsevier

Published: 1991-10-08

Total Pages: 542

ISBN-13: 0444596755

DOWNLOAD EBOOK

The aim of the contributions in this volume is to give a current overview on the basic properties and applications of semiconductor and nonlinear optical materials for optoelectronics and integrated optics. They provide a cross-linkage between different materials (III-V, II-VI, Si-Ge, glasses, etc.), various sample dimensions (from bulk crystals to quantum dots), and a range of techniques for growth (LPE to MOMBE) and for processing (from surface passivation to ion beams). Major growth techniques and materials are discussed, including the sophisticated technologies required to exploit the exciting properties of low dimensional semiconductors. These proceedings will prove an invaluable guide to the current state of optoelectronic and nonlinear optical materials development, as well as indicating trends and also future markets for optoelectronic devices.


Defects in Microelectronic Materials and Devices

Defects in Microelectronic Materials and Devices

Author: Daniel M. Fleetwood

Publisher: CRC Press

Published: 2008-11-19

Total Pages: 772

ISBN-13: 1420043773

DOWNLOAD EBOOK

Uncover the Defects that Compromise Performance and ReliabilityAs microelectronics features and devices become smaller and more complex, it is critical that engineers and technologists completely understand how components can be damaged during the increasingly complicated fabrication processes required to produce them.A comprehensive survey of defe