Transforms and Partial Differential Equations(Combo)

Transforms and Partial Differential Equations(Combo)

Author: P. Sivaramakrishna Das

Publisher: Pearson Education India

Published:

Total Pages: 599

ISBN-13: 9353431107

DOWNLOAD EBOOK

Transforms and Partial Differential Equations, 6e is designed to provide a firm foundation on the basic concepts of partial differential equations, Fourier series analysis, Fourier series techniques in solving heat flow problems, Fourier transform techniques and Z-transforms. In their trademark student-friendly style, the authors have endeavored to provide an in-depth understanding of the important principles, methods and processes of obtaining results in a systematic way with emphasis on clarity and academic rigor. Features: • More than 320 solved examples • More than 250 exercises with answers • More than 150 Part A questions with answers • Plenty of hints for problems • Includes a free book containing FAQs Table of Contents: Preface Acknowledgements About the Authors 1. Partial Differential Equations 2. Fourier Series 3. Application of Partial Differential Equations 4. Fourier Transforms 5. Z-transforms and Difference Equations Formulae To Remember


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Partial Differential Equations in Action

Partial Differential Equations in Action

Author: Sandro Salsa

Publisher: Springer

Published: 2015-04-24

Total Pages: 714

ISBN-13: 3319150936

DOWNLOAD EBOOK

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.


Partial Differential Equations with Fourier Series and Boundary Value Problems

Partial Differential Equations with Fourier Series and Boundary Value Problems

Author: Nakhle H. Asmar

Publisher: Courier Dover Publications

Published: 2017-03-23

Total Pages: 818

ISBN-13: 0486820831

DOWNLOAD EBOOK

Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; instructions for obtaining the Instructor Solutions Manual is included in the book. 2004 edition, with minor revisions.


Introduction to Partial Differential Equations

Introduction to Partial Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

Published: 2013-11-08

Total Pages: 636

ISBN-13: 3319020994

DOWNLOAD EBOOK

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.


Partial Differential Equations and Boundary-Value Problems with Applications

Partial Differential Equations and Boundary-Value Problems with Applications

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 545

ISBN-13: 0821868896

DOWNLOAD EBOOK

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.


Introduction to Partial Differential Equations

Introduction to Partial Differential Equations

Author: Aslak Tveito

Publisher: Springer Science & Business Media

Published: 2008-01-21

Total Pages: 402

ISBN-13: 0387227733

DOWNLOAD EBOOK

Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.


Applied Partial Differential Equations

Applied Partial Differential Equations

Author: J. David Logan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 1468405330

DOWNLOAD EBOOK

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.