The most comprehensive book on electroacoustic transducers and arrays for underwater sound Includes transducer modeling techniques and transducer designs that are currently in use Includes discussion and analysis of array interaction and nonlinear effects in transducers Contains extensive data in figures and tables needed in transducer and array design Written at a level that will be useful to students as well as to practicing engineers and scientists
This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains corrections to the first edition, end-of-chapter exercises, and solutions to selected exercises. Each chapter includes a short introduction, end-of-chapter summary, and an extensive reference list offering the reader more detailed information and historical context. A glossary of key terms is also included at the end.
This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography and symmetry, applying these concepts to a large range of materials. New to this edition are more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 additional exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualise crystal structures and more abstract mathematical objects, supporting more difficult topics like point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and Powerpoints of figures from the book.
This book provides comprehensive coverage of the detection and processing of signals in underwater acoustics. Background material on active and passive sonar systems, underwater acoustics, and statistical signal processing makes the book a self-contained and valuable resource for graduate students, researchers, and active practitioners alike. Signal detection topics span a range of common signal types including signals of known form such as active sonar or communications signals; signals of unknown form, including passive sonar and narrowband signals; and transient signals such as marine mammal vocalizations. This text, along with its companion volume on beamforming, provides a thorough treatment of underwater acoustic signal processing that speaks to its author’s broad experience in the field.
Offering complete and comprehensive coverage of modern sonar spectrum system analysis, Underwater Acoustics: Analysis, Design and Performance of Sonar provides a state-of-the-art introduction to the subject and has been carefully structured to offer a much-needed update to the classic text by Urick. Expanded to included computational approaches to the topic, this book treads the line between the highly theoretical and mathematical texts and the more populist, non-mathematical books that characterize the existing literature in the field. The author compares and contrasts different techniques for sonar design, analysis and performance prediction and includes key experimental and theoretical results, pointing the reader towards further detail with extensive references. Practitioners in the field of sonar design, analysis and performance prediction as well as graduate students and researchers will appreciate this new reference as an invaluable and timely contribution to the field. Chapters include the sonar equation, radiated, self and ambient noise, active sonar sources, transmission loss, reverberation, transducers, active target strength, statistical detection theory, false alarms, contacts and targets, variability and uncertainty, modelling detections and tactical decision aids, cumulative probability of detection, tracking target motion analysis and localization, and design and evaluation of sonars
The most comprehensive book on electroacoustic transducers and arrays for underwater sound Includes transducer modeling techniques and transducer designs that are currently in use Includes discussion and analysis of array interaction and nonlinear effects in transducers Contains extensive data in figures and tables needed in transducer and array design Written at a level that will be useful to students as well as to practicing engineers and scientists
This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.