Transcendental Number Theory

Transcendental Number Theory

Author: Alan Baker

Publisher: Cambridge University Press

Published: 1990-09-28

Total Pages: 180

ISBN-13: 9780521397919

DOWNLOAD EBOOK

First published in 1975, this classic book gives a systematic account of transcendental number theory, that is those numbers which cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory enriching many branches of pure mathematics. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalisation of the Thue-Siegel-Roth theorem, of Shidlovsky's work on Siegel's |E|-functions and of Sprindzuk's solution to the Mahler conjecture. The volume was revised in 1979: however Professor Baker has taken this further opportunity to update the book including new advances in the theory and many new references.


Transcendental Numbers

Transcendental Numbers

Author: M. Ram Murty

Publisher: Springer

Published: 2014-06-24

Total Pages: 219

ISBN-13: 1493908324

DOWNLOAD EBOOK

This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.


Pillars of Transcendental Number Theory

Pillars of Transcendental Number Theory

Author: Saradha Natarajan

Publisher: Springer Nature

Published: 2020-05-02

Total Pages: 184

ISBN-13: 9811541558

DOWNLOAD EBOOK

This book deals with the development of Diophantine problems starting with Thue's path breaking result and culminating in Roth's theorem with applications. It discusses classical results including Hermite–Lindemann–Weierstrass theorem, Gelfond–Schneider theorem, Schmidt’s subspace theorem and more. It also includes two theorems of Ramachandra which are not widely known and other interesting results derived on the values of Weierstrass elliptic function. Given the constantly growing number of applications of linear forms in logarithms, it is becoming increasingly important for any student wanting to work in this area to know the proofs of Baker’s original results. This book presents Baker’s original results in a format suitable for graduate students, with a focus on presenting the content in an accessible and simple manner. Each student-friendly chapter concludes with selected problems in the form of “Exercises” and interesting information presented as “Notes,” intended to spark readers’ curiosity.


Irrationality and Transcendence in Number Theory

Irrationality and Transcendence in Number Theory

Author: David Angell

Publisher: CRC Press

Published: 2021-12-30

Total Pages: 243

ISBN-13: 100052373X

DOWNLOAD EBOOK

Features Uses techniques from widely diverse areas of mathematics, including number theory, calculus, set theory, complex analysis, linear algebra, and the theory of computation. Suitable as a primary textbook for advanced undergraduate courses in number theory, or as supplementary reading for interested postgraduates. Each chapter concludes with an appendix setting out the basic facts needed from each topic, so that the book is accessible to readers without any specific specialist background.


Number Theory IV

Number Theory IV

Author: A.N. Parshin

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 351

ISBN-13: 3662036444

DOWNLOAD EBOOK

This book is a survey of the most important directions of research in transcendental number theory. For readers with no specific background in transcendental number theory, the book provides both an overview of the basic concepts and techniques and also a guide to the most important results and references.


Making Transcendence Transparent

Making Transcendence Transparent

Author: Edward B. Burger

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 266

ISBN-13: 1475741146

DOWNLOAD EBOOK

This is the first book that makes the difficult and important subject of transcendental number theory accessible to undergraduate mathematics students. Edward Burger is one of the authors of The Heart of Mathematics, winner of a 2001 Robert W. Hamilton Book Award. He will also be awarded the 2004 Chauvenet Prize, one of the most prestigious MAA prizes for outstanding exposition.


Contributions to the Theory of Transcendental Numbers

Contributions to the Theory of Transcendental Numbers

Author: Gregory Chudnovsky

Publisher: American Mathematical Soc.

Published: 1984

Total Pages: 464

ISBN-13: 0821815008

DOWNLOAD EBOOK

Contains a collection of papers devoted primarily to transcendental number theory and diophantine approximations. This title includes a text of the author's invited address on his work on the theory of transcendental numbers to the 1978 International Congress of Mathematicians in Helsinki.


Transcendental Numbers. (AM-16)

Transcendental Numbers. (AM-16)

Author: Carl Ludwig Siegel

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 102

ISBN-13: 1400882354

DOWNLOAD EBOOK

The description for this book, Transcendental Numbers. (AM-16), will be forthcoming.


Introduction to Algebraic Independence Theory

Introduction to Algebraic Independence Theory

Author: Yuri V. Nesterenko

Publisher: Springer

Published: 2003-07-01

Total Pages: 257

ISBN-13: 3540445501

DOWNLOAD EBOOK

In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.


Diophantine Approximation on Linear Algebraic Groups

Diophantine Approximation on Linear Algebraic Groups

Author: Michel Waldschmidt

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 649

ISBN-13: 3662115697

DOWNLOAD EBOOK

The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.