Training Systems Using Python Statistical Modeling
Author: Curtis Miller
Publisher: Packt Publishing Ltd
Published: 2019-05-20
Total Pages: 284
ISBN-13: 1838820647
DOWNLOAD EBOOKLeverage the power of Python and statistical modeling techniques for building accurate predictive models Key FeaturesGet introduced to Python's rich suite of libraries for statistical modelingImplement regression, clustering and train neural networks from scratchIncludes real-world examples on training end-to-end machine learning systems in PythonBook Description Python's ease of use and multi-purpose nature has led it to become the choice of tool for many data scientists and machine learning developers today. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book takes you through an exciting journey, of using these libraries to implement effective statistical models for predictive analytics. You’ll start by diving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will look at supervised learning, where you will explore the principles of machine learning and train different machine learning models from scratch. You will also work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. This book also covers algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. You will also learn how neural networks can be trained and deployed for more accurate predictions, and which Python libraries can be used to implement them. By the end of this book, you will have all the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics. What you will learnUnderstand the importance of statistical modelingLearn about the various Python packages for statistical analysisImplement algorithms such as Naive Bayes, random forests, and moreBuild predictive models from scratch using Python's scikit-learn libraryImplement regression analysis and clusteringLearn how to train a neural network in PythonWho this book is for If you are a data scientist, a statistician or a machine learning developer looking to train and deploy effective machine learning models using popular statistical techniques, then this book is for you. Knowledge of Python programming is required to get the most out of this book.