The Impact of Neighborhood Traffic Density and Deprivation on Lung Function Among Children with Asthma

The Impact of Neighborhood Traffic Density and Deprivation on Lung Function Among Children with Asthma

Author: Sara Lynn Gale

Publisher:

Published: 2012

Total Pages: 69

ISBN-13:

DOWNLOAD EBOOK

To investigate the extent to which traffic exposure affects the lung function of children with asthma and how local neighborhood factors may modify this relation, a merge of epidemiologic, environmental health and geographic methods is necessary. People and places are linked; therefore, it is necessary to consider place-effects on health as well as environmental exposures. The Fresno Asthmatic Children's Environment Study (FACES) is a longitudinal cohort study of children with asthma in Fresno, California that followed participants from 2000-2008 to explore short-term and long-term effects of ambient air pollution on lung function (as measured by spirometry, wheeze, and asthma symptoms). With publicly available data on traffic counts in Fresno, CA from 2000-2008, I built a spatial model of traffic exposure that varies both temporally and spatially for the FACES cohort. To capture and quantify neighborhood characteristics, I constructed individual neighborhoods based on global positioning software (GPS) data and walking distances around participant homes. To evaluate neighborhood deprivation, I collected geographic information system (GIS) data on parks, grocery stores, bus stops, etc. from publicly available sources and created an index based on Item Response Theory. To assess the marginal risk difference of lung function among children with asthma exposed to high levels of traffic pollution and those exposed to lower levels of traffic pollution (as measured by traffic density), I apply semi-parametric causal inference methods and use Targeted Maximum Likelihood Estimation (TMLE). More FACES participants who live in high deprivation neighborhoods are also farther away from high traffic areas. Neighborhood deprivation, as defined by a combination of GIS variables in this study, does not track well with US Census poverty. The marginal change in lung function from exposure to high neighborhood traffic to lower neighborhood traffic, without stratification for neighborhood deprivation, is -0.233 (95% CI -0.338, -0.129). The results can be interpreted as--the average decrease of FEV1 is 0.233 L, or there is a 12% reduction in lung function. Either neighborhood deprivation does not modify the effect of traffic on lung function or there is not enough data to evaluate this type of effect modification. The findings indicate that neighborhood exposure to traffic adversely affects lung function among the FACES cohort of children with asthma.


A Comprehensive Analysis of Air Pollution and Inequity During COVID-19 in Los Angeles County

A Comprehensive Analysis of Air Pollution and Inequity During COVID-19 in Los Angeles County

Author: Kevin Michael Marlis

Publisher:

Published: 2021

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The COVID-19 global pandemic has impacted every facet of life, especially within Los Angeles County, one of the hardest hit regions in the world. Not every community within Los Angeles County has been affected evenly. The aim of this research is twofold: the creation of a COVID-19 Equity index value for neighborhoods within Los Angeles County; and to assess the response to COVID-19 on air quality within the Los Angeles region. This research will contribute to a better understanding of the consequences of COVID-19 on low-income communities where health and healthcare is at a premium. The COVID-19 Equity index can be used to assess the COVID-19 vaccination rollout and whether or not the appropriate demographics are prioritized. This research also shows the impact of the reduction of passenger traffic due to COVID-19 related stay at home orders on Nitrogen Dioxide (NO2), Particulate Matter 2.5 (PM2.5), and Ozone, three of the leading contributors to smog, pollution, and asthma.


Pathways to Urban Sustainability

Pathways to Urban Sustainability

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-11-11

Total Pages: 193

ISBN-13: 0309444535

DOWNLOAD EBOOK

Cities have experienced an unprecedented rate of growth in the last decade. More than half the world's population lives in urban areas, with the U.S. percentage at 80 percent. Cities have captured more than 80 percent of the globe's economic activity and offered social mobility and economic prosperity to millions by clustering creative, innovative, and educated individuals and organizations. Clustering populations, however, can compound both positive and negative conditions, with many modern urban areas experiencing growing inequality, debility, and environmental degradation. The spread and continued growth of urban areas presents a number of concerns for a sustainable future, particularly if cities cannot adequately address the rise of poverty, hunger, resource consumption, and biodiversity loss in their borders. Intended as a comparative illustration of the types of urban sustainability pathways and subsequent lessons learned existing in urban areas, this study examines specific examples that cut across geographies and scales and that feature a range of urban sustainability challenges and opportunities for collaborative learning across metropolitan regions. It focuses on nine cities across the United States and Canada (Los Angeles, CA, New York City, NY, Philadelphia, PA, Pittsburgh, PA, Grand Rapids, MI, Flint, MI, Cedar Rapids, IA, Chattanooga, TN, and Vancouver, Canada), chosen to represent a variety of metropolitan regions, with consideration given to city size, proximity to coastal and other waterways, susceptibility to hazards, primary industry, and several other factors.


The Association Between Exposure to Traffic-Related Air Pollution During Pregnancy and Children's Health Outcomes in the San Joaquin Valley of California

The Association Between Exposure to Traffic-Related Air Pollution During Pregnancy and Children's Health Outcomes in the San Joaquin Valley of California

Author: Amy Michelle Padula

Publisher:

Published: 2010

Total Pages: 292

ISBN-13:

DOWNLOAD EBOOK

Ambient air pollution and traffic exposure are widely recognized as an important public health concern. This research aims to investigate the association between traffic-related air pollution exposure during pregnancy and two important public health outcomes: pulmonary function in asthmatic children and term low birth weight. Asthma is the leading cause of childhood morbidity and term low birth weight is an important predictor of infant mortality. The period of pregnancy may be a critical time during which exposures may affect these health outcomes. Two study populations are used in this dissertation: the Fresno Asthmatic Children and Environment Study - Lifetime Exposure (FACES-LITE) and the Study of Air pollution, Genetics and the Early life events (SAGE). FACES-LITE is a longitudinal cohort of asthmatic children, aged 6-11 at baseline, with periodic pulmonary function tests and exposure assessment of ambient air pollutants during pregnancy in Fresno, California. SAGE is a study of birth records from four counties in the San Joaquin Valley of California from 2000-2006 linked to traffic density metrics based on the geo-coded residences of the mother at birth. For both studies, causal inference methods were used to estimate the association between exposure to traffic-related air pollution during pregnancy and these child health outcomes. Specifically, targeted maximum likelihood estimation (TMLE) was used to obtain the counterfactual marginal effect of traffic-related air pollution exposure during pregnancy on pulmonary function and term low birth weight. In other words, the predicted outcomes were compared had everyone been exposed to specific levels of air pollution during pregnancy. The results of the TMLE for FACES-LITE found that above-median levels of ambient NO2 exposure during the first and second trimesters were associated with deficits in pulmonary function for all age groups. The SAGE analysis showed the highest quartile of traffic density exposure was associated with significantly higher term low birth weight compared to the lowest quartile; however, there was no evidence of a monotonic exposure-response relation. In general, the studies presented in this dissertation suggest that traffic-related air pollution exposure during pregnancy may be associated with pulmonary function deficits in children with asthma, as well as with an increased risk for term low birth weight. These analyses represent the first application of TMLE to the study of air pollution and child health outcomes. In addition to their novelty, these causal inference methods are unique in that they offer easily interpretable parameters with important public health implications and unlike traditional regression methods, they do not assume arbitrary models. The analysis of the FACES-LITE study contributes to the subject-matter and supports earlier work on the association of ambient air pollution exposure during pregnancy and lung function in children by using the repeated measures of lung function. In contrast, the SAGE analysis focused on a methodological approach using causal methods and contextual variables. For that reason, I included only one exposure metric and one birth outcome for a demonstration of these methods. This subject-matter analysis will be extended in future analyses to further characterize the complexity of the exposure and any additional potential confounders and effect modifiers.